Skip to main content
Advanced Search

Filters: partyWithName: Böhlke, J K (X) > partyWithName: McMahon, P B (X)

Folders: ROOT > ScienceBase Catalog > USGS National Research Program > USGS National Research Program Projects ( Show direct descendants )

8 results (8ms)   

View Results as: JSON ATOM CSV
Water samples from short-screen monitoring wells installed along a 90-km transect in southwestern Kansas were analyzed for major ions, trace elements, isotopes (H, B, C, N, O, S, Sr), and dissolved gases (He, Ne, N2, Ar, O2, CH4) to evaluate the geochemistry, radiocarbon ages, and paleorecharge conditions in the unconfined central High Plains aquifer. The primary reactions controlling water chemistry were dedolomitization, cation exchange, feldspar weathering, and O2 reduction and denitrification. Radiocarbon ages adjusted for C mass transfers ranged from <2.6 ka (14C) B.P. near the water table to 12.8 ± 0.9 ka (14C) B.P. at the base of the aquifer, indicating the unconfined central High Plains aquifer contained...
Categories: Publication; Types: Citation
In 2003–2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida...
Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical...
In 2000–2002, three rangeland and six irrigated sites were instrumented to assess the storage and transit time of chemicals in thick (15 to 50 m) unsaturated zones (UZ) in the High Plains. These processes are likely to influence relations between land use and groundwater quality, yet they have not been documented systematically in the High Plains. Land use and climate were important controls on the size of subsoil chloride, nitrate, and pesticide compound reservoirs. The reservoirs under irrigated cropland generally were larger than those under rangeland because more chemicals were applied to cropland than to rangeland. In some cases, chloride and nitrate reservoirs under rangeland were larger than those under cropland,...
In 2000–2002, three rangeland and six irrigated sites were instrumented to assess the storage and transit time of chemicals in thick (15 to 50 m) unsaturated zones (UZ) in the High Plains. These processes are likely to influence relations between land use and groundwater quality, yet they have not been documented systematically in the High Plains. Land use and climate were important controls on the size of subsoil chloride, nitrate, and pesticide compound reservoirs. The reservoirs under irrigated cropland generally were larger than those under rangeland because more chemicals were applied to cropland than to rangeland. In some cases, chloride and nitrate reservoirs under rangeland were larger than those under cropland,...
Mobilization of natural nitrate (NO3-) deposits in the subsoil by irrigation water in arid and semiarid regions has the potential to produce large groundwater NO3- concentrations. The use of isotopes to distinguish between natural and anthropogenic NO3- sources in these settings could be complicated by the wide range in δ15N values of natural NO3-. An ?10?000 year record of paleorecharge from the regionally extensive High Plains aquifer indicates that δ15N values for NO3- derived from natural sources ranged from 1.3 to 12.3? and increased systematically from the northern to the southern High Plains. This collective range in δ15N values spans the range that might be interpreted as evidence for fertilizer and animal-waste...
Categories: Publication; Types: Citation
In 2003–2005, systematic studies in four contrasting hydrogeologic settings were undertaken to improve understanding of source and transport controls on nitrate movement to public supply wells (PSW) in principal aquifers of the United States. Chemical, isotopic, and age tracer data show that agricultural fertilizers and urban septic leachate were the primary sources of large nitrate concentrations in PSW capture zones at Modesto, California (Central Valley aquifer system) and York, Nebraska (High Plains aquifer). Urban septic leachate and fertilizer (possibly nonfarm) were the primary sources of large nitrate concentrations in PSW capture zones at Woodbury, Connecticut (glacial aquifer system), and Tampa, Florida...