Skip to main content
Advanced Search

Filters: partyWithName: Northeast CASC (X) > Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2016 Projects ( Show direct descendants )

9 results (31ms)   

Filters
Date Range
Extensions
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The Gulf of Maine has recently experienced its warmest 5-year period (2015–2020) in the instrumental record. This warming was associated with a decline in the signature subarctic zooplankton species, Calanus finmarchicus. The temperature changes have also led to impacts on commercial species such as Atlantic cod (Gadus morhua) and American lobster (Homarus americanus) and protected species including Atlantic puffins (Fratercula arctica) and northern right whales (Eubalaena glacialis). The recent period also saw a decline in Atlantic herring (Clupea harengus) recruitment and an increase in novel harmful algal species, although these have not been attributed to the recent warming. Here, we use an ensemble of numerical...
Categories: Publication; Types: Citation
Abstract (from ESA): Estimating population size and resource selection functions (RSFs) are common approaches in applied ecology for addressing wildlife conservation and management objectives. Traditionally such approaches have been undertaken separately with different sources of data. Spatial capture–recapture (SCR) provides a hierarchical framework for jointly estimating density and multi‐scale resource selection, and data integration techniques provide opportunities for improving inferences from SCR models. Despite the added benefits, there have been few applications of SCR‐RSF integration, potentially due to complexities of specifying and fitting such models. Here, we extend a previous integrated SCR‐RSF model...
Abstract (from Nature Climate Change): Many varieties of short-duration extreme weather pose a threat to global crop production, food security and farmer livelihoods1,2,3,4. Hourly exposure to extreme heat has been identified as detrimental to crop yields1,5; however, the influence of hourly rainfall intensity and extremes on yields remains unknown4,6,7. Here, we show that while maize and soy yields in the United States are severely damaged by the rarest hourly rainfall extremes (≥50 mm hr−1), they benefit from heavy rainfall up to 20 mm hr−1, roughly the heaviest downpour of the year on average. We also find that yields decrease in response to drizzle (0.1–1 mm hr−1), revealing a complex pattern of yield sensitivity...
Categories: Publication; Types: Citation
Abstract (from SpringerLink): The resilience of socio-ecological systems to sea level rise, storms and flooding can be enhanced when coastal habitats are used as natural infrastructure. Grey infrastructure has long been used for coastal flood protection but can lead to unintended negative impacts. Natural infrastructure often provides similar services as well as added benefits that support short- and long-term biological, cultural, social, and economic goals. While natural infrastructure is becoming more widespread in practice, it often represents a relatively small fraction within portfolios of coastal risk-reducing strategies compared to more traditional grey infrastructure. This study provides a comprehensive...
The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the...
Abstract (from Global Change Biology): Species' response to rapid climate change can be measured through shifts in timing of recurring biological events, known as phenology. The Gulf of Maine is one of the most rapidly warming regions of the ocean, and thus an ideal system to study phenological and biological responses to climate change. A better understanding of climate-induced changes in phenology is needed to effectively and adaptively manage human-wildlife conflicts. Using data from a 20+ year marine mammal observation program, we tested the hypothesis that the phenology of large whale habitat use in Cape Cod Bay has changed and is related to regional-scale shifts in the thermal onset of spring. We used a multi-season...
Categories: Publication; Types: Citation
Abstract (from Wiley): Populations along geographical range limits are often exposed to unsuitable climate and low resource availability relative to core populations. As such, there has been a renewed focus on understanding the factors that determine range limits to better predict how species will respond to global change. Using recent theory on range limits and classical understanding of density dependence, we evaluated the influence of resource availability on the snowshoe hare Lepus americanus along its trailing range edge. We estimated variation in population density, habitat use, survival, and parasite loads to test the Great Escape Hypothesis (GEH), i.e. that density dependence determines, in part, a species'...
Categories: Publication; Types: Citation
Abstract (from Diversity and Distributions): Aim Identifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects. Location New Hampshire and Vermont, USA. Methods Using causal and correlational models and new theory on range limits, we compared current (2014–2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high-emission scenario (RCP8.5) of projected snow and forest biomass change. Results Our hypothesis that...
Categories: Publication; Types: Citation
Abstract (from Water): Climate change is likely to impact precipitation as well as snow accumulation and melt in the Northeastern and Upper Midwest United States, ultimately affecting the quantity and seasonal distribution of streamflow. The objective of this study is to analyze seasonality of long-term daily annual maximum streamflow (AMF) records and its changes for 158 sites in Northeastern and Upper Midwest Unites States. A comprehensive circular statistical approach comprising a kernel density method was used to assess the seasonality of AMF. Temporal changes were analyzed by separating the AMF records into two 30-year sub-periods (1951–1980 and 1981–2010). Results for temporal change in seasonality showed...
Categories: Publication; Types: Citation