Skip to main content
Advanced Search

Filters: Types: Citation (X) > Extensions: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2014 Projects > Foundational Science Area: Assessing Climate Change Impacts to Wildlife and Habitats in the North Central U.S. ( Show direct descendants )

17 results (34ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
____FY 2014 Projects
_____Foundational Science Area: Assessing Climate Change Impacts to Wildlife and Habitats in the North Central U.S.
Filters
Date Range
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract From: (The growth and distribution of plant species in water limited environments is often limited by the atmospheric evaporative demands which us measured in terms of potential evaporation (PET). While PET estimated by different methods have been widely used to assess vegetation response to climate change, species distribution models offer unique opportunity to compare their efficiency in predicting habitat suitability of plant species. In this study, we perform the first multi-species comparison of two widely used metrics of PET i.e., Penman-Monteith and Thornthwaite, and show how they result in similar or different on projected distribution of water limited species and potential consequences on their...
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions, wildlife habitat, watershed health, restoration concepts from a landscape perspective, and social and policy concerns. We provide...
Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland...
Categories: Publication; Types: Citation
Abstract (from http://www.islandpress.org/book/climate-change-in-wildlands): Scientists have been warning for years that human activity is heating up the planet and climate change is under way. In the past century, global temperatures have risen an average of 1.3 degrees Fahrenheit, a trend that is expected to only accelerate. But public sentiment has taken a long time to catch up, and we are only just beginning to acknowledge the serious effects this will have on all life on Earth. The federal government is crafting broad-scale strategies to protect wildland ecosystems from the worst effects of climate change. The challenge now is to get the latest science into the hands of resource managers entrusted with protecting...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/13-0905.1): Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological...
Rates of climate and land use change vary across the Great Plains and Rocky Mountains as do the responses of ecosystems to these changes. Knowledge of locations of rapid land use and climate change and changes in ecosystem services such as water runoff and ecological productivity are important for vulnerability assessment and crafting locally relevant adaptation strategies to cope with these changes. This project assessed the loss of public, private, and tribal lands due to ongoing land use intensifications and fragmentation extents across the NC CSC domain. In addition, the project evaluated how the climate, ecosystem processes, and vegetation have shifted over the past half century and how they are projected to...
Most nations around the world set aside some lands from where people live and work for the benefit of nature. Wildland ecosystems are those lands occupied chiefly by native plants and animals, not intensively used as urban or residential areas, and not intensively managed for the production of domesticated plants or animals (Kalisz and Wood 1995). Public parks, forests, grasslands, seashores, and other wildland ecosystems are central to the global strategy for the conservation of nature. These areas are also vital to the well-being of people. They provide essential ecosystem services, such as provisioning of food and water, supporting pollination and nutrient cycling, regulating floods and other disturbances, and...
Categories: Publication; Types: Citation
Abstract (from http://www.sciencedirect.com/science/article/pii/S1574954115001466): Anticipating the ecological effects of climate change to inform natural resource climate adaptation planning represents one of the primary challenges of contemporary conservation science. Species distribution models have become a widely used tool to generate first-pass estimates of climate change impacts to species probabilities of occurrence. There are a number of technical challenges to constructing species distribution models that can be alleviated by the use of scientific workflow software. These challenges include data integration, visualization of modeled predictor–response relationships, and ensuring that models are reproducible...
Abstract (from http://www.aimspress.com/article/10.3934/environsci.2015.2.400): State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate...
The chapters of this book have delved into the timely and important topic of science and management of wildland ecosystems in the face of climate and land use change. The period of the book’s development (2011–2015) was one of rapid advancement in science, policy, agency infrastructure, and understanding of climate change adaptation (chaps. 2, 3, and 13). During this period, evidence of climate change and its consequences was ever more apparent. This was the warmest five-year period on record (http://www.ncdc.noaa.gov). Extreme climate events, such as droughts in California, Amazonia, and Australia, caused fundamental changes in allocating water to people and managing human risk from fire. Evidence of the ecological...
Categories: Publication; Types: Citation