Skip to main content
Advanced Search

Filters: Types: Citation (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Midwest CASC > FY 2019 Projects ( Show direct descendants )

9 results (11ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Midwest CASC
____FY 2019 Projects
View Results as: JSON ATOM CSV
Understanding age and growth are important for fisheries science and management; however, age data are not routinely collected for many populations. We propose and test a method of borrowing age–length data across increasingly broader spatiotemporal levels to create a hierarchical age–length key (HALK). We assessed this method by comparing growth and mortality metrics to those estimated from lake–year age–length keys ages using seven common freshwater fish species across the upper Midwestern United States. Levels used for data borrowing began most specifically by borrowing within lake across time and increased in breadth to include data within the Hydrologic Unit Code (HUC) 10 watershed, HUC8 watershed, Level III...
Categories: Publication; Types: Citation
thumbnail
Fish data on six species (black crappie (Pomoxis nigromaculatus), bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides), northern pike (Esox lucius), walleye (Sander vitreus), and yellow perch (perca flavescens)) caught in gill nets and trap nets between 2000 and 2019 during Minnesota Department of Natural Resources (MNDNR) fisheries surveys done in the months of June through September. Fish catch and effort (number of nets set overnight) comes from over 1,000 Minnesota lakes. In addition to fisheries data, we included additional information concerning lake characteristics, predicted water temperature, and watershed land use. Lake area and maximum depth were obtained from MNDNR public databases....
Poikilothermic animals comprise most species on Earth and are especially sensitive to changes in environmental temperatures. Species conservation in a changing climate relies upon predictions of species responses to future conditions, yet predicting species responses to climate change when temperatures exceed the bounds of observed data is fraught with challenges. We present a physiologically guided abundance (PGA) model that combines observations of species abundance and environmental conditions with laboratory-derived data on the physiological response of poikilotherms to temperature to predict species geographical distributions and abundance in response to climate change. The model incorporates uncertainty in...
Categories: Publication; Types: Citation
Color polymorphism is an adaptive strategy in which a species exhibits multiple color phenotypes in a population. Often, phenotypes are variably suited to different environmental conditions which may buffer the population against variable conditions. Modern climate change is creating novel selective pressures for many species, especially in winter habitats. Few studies have quantified the benefits of polymorphism for allowing species to cope with climate-induced environmental change, particularly for species with more cryptic differences between morphs. We investigated how color polymorphism mediates selective pressures in ruffed grouse Bonasa umbellus, a winter-adapted bird species of North American forests. Ruffed...
Categories: Publication; Types: Citation
Estimating relative abundance is critical for informing conservation and management efforts and for making inferences about the effects of environmental change on populations. Freshwater fisheries span large geographic regions, occupy diverse habitats and consist of varying species assemblages. Monitoring schemes used to sample these diverse populations often result in populations being sampled at different times and under different environmental conditions. Varying sampling conditions can bias estimates of abundance when compared across time, location and species, and properly accounting for these biases is critical for making inferences. We develop a joint species distribution model (JSDM) that accounts for varying...
Categories: Publication; Types: Citation
Many real-world scientific processes are governed by complex non-linear dynamic systems that can be represented by differential equations. Recently, there has been an increased interest in learning, or discovering, the forms of the equations driving these complex non-linear dynamic systems using data-driven approaches. In this paper, we review the current literature on data-driven discovery for dynamic systems. We provide a categorisation to the different approaches for data-driven discovery and a unified mathematical framework to show the relationship between the approaches. Importantly, we discuss the role of statistics in the data-driven discovery field, describe a possible approach by which the problem can be...
Categories: Publication; Types: Citation
thumbnail
Fish catch and effort data for three species caught in gill nets and trap nets between 1988 and 2019 as part of Minnesota Department of Natural Resources (MNDNR) fisheries surveys conducted during the summer and early fall are included from over 1,300 Minnesota lakes. The three fish species included are: bluegill (Lepomis marochirus) a warm-water adapted species, yellow perch (Perca flavescens) a cool-water adapted species, and cisco (Coregonus artedi) a cold-water adapted species. Additional data concerning lake characteristics and surrounding land cover were also included. Mean July lake surface temperature was calculated using simulated daily water temperatures. Watershed land use including agricultural, barren,...
The snowshoe hare (Lepus americanus) possesses a broad suite of adaptations to winter, including a seasonal coat color molt. Recently, climate change has been implicated in the range contraction of snowshoe hares along the southern range boundary. With shortening snow season duration, snowshoe hares are experiencing increased camouflage mismatch with their environment reducing survival. Phenological variation of hare molt at regional scales could facilitate local adaptation in the face of climate change, but the level of variation, especially along the southern range boundary, is unknown. Using a network of trail cameras and historical museum specimens, we (1) developed contemporary and historical molt phenology...
Categories: Publication; Types: Citation
thumbnail
Climate change affects the abundance and distribution of species worldwide. Poikilothermic animals comprise most species on Earth and are extremely sensitive to changes in environmental temperatures. Predicting species responses to climate change when temperatures exceed the bounds of observed data is fraught with challenges. Here, we combine empirical observations of species abundance and environmental conditions across the landscape with laboratory-derived data on the physiological response of poikilotherms to changes in temperature to predict species geographical distributions and abundance in response to climate change. We show that predicted changes in distributions, local extinction, and abundance of cold,...


    map background search result map search result map Data In Support Of Accounting For Spatio-Temporal Variation In Catachability In Joint Species Distribution Models Data in Support of Predicting Climate Change Impacts on Poikilotherms Using Physiologically Guided Species Abundance Models Code for Predicting climate change impacts on poikilotherms using physiologically guided species abundance models Data In Support Of Accounting For Spatio-Temporal Variation In Catachability In Joint Species Distribution Models Data in Support of Predicting Climate Change Impacts on Poikilotherms Using Physiologically Guided Species Abundance Models Code for Predicting climate change impacts on poikilotherms using physiologically guided species abundance models