Skip to main content
Advanced Search

Filters: partyWithName: Laura M Thompson (X) > partyWithName: Erik A Beever (X)

Folder: ROOT ( Show direct descendants )

8 results (10ms)   

Location

Folder
ROOT
View Results as: JSON ATOM CSV
Abstract (from Fisheries Magazine): Ecosystem transformation can be defined as the emergence of a self‐organizing, self‐sustaining, ecological or social–ecological system that deviates from prior ecosystem structure and function. These transformations are occurring across the globe; consequently, a static view of ecosystem processes is likely no longer sufficient for managing fish, wildlife, and other species. We present a framework that encompasses three strategies for fish and wildlife managers dealing with ecosystems vulnerable to transformation. Specifically, managers can resist change and strive to maintain existing ecosystem composition, structure, and function; accept transformation when it is not feasible...
Categories: Publication; Types: Citation
Abstract (from Conservation Biology): Adaptive capacity (AC)—the ability of a species to cope with or accommodate climate change—is a critical determinant of species vulnerability. Using information on species’ AC in conservation planning is key to ensuring successful outcomes. We identified connections between a list of species’ attributes (e.g., traits, population metrics, and behaviors) that were recently proposed for assessing species’ AC and management actions that may enhance AC for species at risk of extinction. Management actions were identified based on evidence from the literature, a review of actions used in other climate adaptation guidance, and our collective experience in diverse fields of global-change...
Categories: Publication; Types: Citation
Abstract (from Frontiers in Ecology and the Environment): Assessing the vulnerability of species to climate change serves as the basis for climate-adaptation planning and climate-smart conservation, and typically involves an evaluation of exposure, sensitivity, and adaptive capacity (AC). AC is a species’ ability to cope with or adjust to changing climatic conditions, and is the least understood and most inconsistently applied of these three factors. We propose an attribute-based framework for evaluating the AC of species, identifying two general classes of adaptive responses: “persist in place” and “shift in space”. Persist-in-place attributes enable species to survive in situ, whereas the shift-in-space response...
Categories: Publication; Types: Citation
Abstract (from Conservation Science and Practice): Resource managers have rarely accounted for evolutionary dynamics in the design or implementation of climate change adaptation strategies. We brought the research and management communities together to identify challenges and opportunities for applying evidence from evolutionary science to support on-the-ground actions intended to enhance species' evolutionary potential. We amalgamated input from natural-resource practitioners and interdisciplinary scientists to identify information needs, current knowledge that can fill those needs, and future avenues for research. Three focal areas that can guide engagement include: (1) recognizing when to act, (2) understanding...
Categories: Publication; Types: Citation
Abstract (from Evolutionary Applications): There is an imperative for conservation practitioners to help biodiversity adapt to accelerating environmental change. Evolutionary biologists are well-positioned to inform the development of evidence-based management strategies that support the adaptive capacity of species and ecosystems. Conservation practitioners increasingly accept that management practices must accommodate rapid environmental change, but harbor concerns about how to apply recommended changes to their management contexts. Given the interest from both conservation practitioners and evolutionary biologists in adjusting management practices, we believe there is opportunity to accelerate the required changes...
Categories: Publication; Types: Citation
Abstract (from Frontiers in Ecology and the Environment): Ecosystem transformation involves the emergence of persistent ecological or social–ecological systems that diverge, dramatically and irreversibly, from prior ecosystem structure and function. Such transformations are occurring at increasing rates across the planet in response to changes in climate, land use, and other factors. Consequently, a dynamic view of ecosystem processes that accommodates rapid, irreversible change will be critical for effectively conserving fish, wildlife, and other natural resources, and maintaining ecosystem services. However, managing ecosystems toward states with novel structure and function is an inherently unpredictable and...
Categories: Publication; Types: Citation
Background Large-river decision-makers are charged with maintaining diverse ecosystem services through unprecedented social-ecological transformations as climate change and other global stressors intensify. The interconnected, dendritic habitats of rivers, which often demarcate jurisdictional boundaries, generate complex management challenges. Here, we explore how the Resist–Accept–Direct (RAD) framework may enhance large-river management by promoting coordinated and deliberate responses to social-ecological trajectories of change. The RAD framework identifies the full decision space of potential management approaches, wherein managers may resist change to maintain historical conditions, accept change toward different...
Abstract (from BioScience): Intensifying global change is propelling many ecosystems toward irreversible transformations. Natural resource managers face the complex task of conserving these important resources under unprecedented conditions and expanding uncertainty. As once familiar ecological conditions disappear, traditional management approaches that assume the future will reflect the past are becoming increasingly untenable. In the present article, we place adaptive management within the resist–accept–direct (RAD) framework to assist informed risk taking for transforming ecosystems. This approach empowers managers to use familiar techniques associated with adaptive management in the unfamiliar territory of...
Categories: Publication; Types: Citation