Skip to main content
Advanced Search

Filters: partyWithName: Imtiaz Rangwala (X) > Types: Citation (X)

Folder: ROOT ( Show direct descendants )

2 results (72ms)   

Location

Folder
ROOT
View Results as: JSON ATOM CSV
Under climate change, ecosystems are experiencing novel drought regimes, often in combination with stressors that reduce resilience and amplify drought’s impacts. Consequently, drought appears increasingly likely to push systems beyond important physiological and ecological thresholds, resulting in substantial changes in ecosystem characteristics persisting long after drought ends (i.e., ecological transformation). In the present article, we clarify how drought can lead to transformation across a wide variety of ecosystems including forests, woodlands, and grasslands. Specifically, we describe how climate change alters drought regimes and how this translates to impacts on plant population growth, either directly...
Categories: Publication; Types: Citation
Soil moisture is crucial for agriculture and hydrology, but its accurate prediction is challenging due to inadequate representation of various complex land surface processes and meteorological influences. In this research, we employ the Long Short-Term Memory (LSTM) framework, a specific architecture of deep learning networks that is effective in processing time series data, for predicting soil moisture. We have developed the Next Generation Interactive Soil Moisture Forecasting System to advance skillful soil moisture predictions at sub-seasonal timescales by leveraging advanced analytics and deep learning, with LSTM at its core. We combined the state-of-the-art climate model's (Community Earth System Model Version...
Categories: Publication; Types: Citation