Skip to main content
Advanced Search

Filters: Categories: Data (X) > Types: OGC WMS Service (X)

Folders: ROOT > ScienceBase Catalog > LandCarbon ( Show direct descendants )

8 results (55ms)   

Location

View Results as: JSON ATOM CSV
thumbnail
Plot-level field data were collected in the summer of 2014 to estimate aboveground and belowground biomass in the Great Dismal Swamp National Wildlife Refuge and Dismal Swamp State Park in North Carolina and Virginia. Data were collected at 85 plots. The location of the center of each plot was recorded with a Trimble ProXH global positioning system (GPS) and differentially corrected. Data files included 1: GDS_plots.csv, 2. GDS_FWD.csv, 3. GDS_LWD.csv, 4. GDS_Shrubs.csv, 5. GDS_Trees.csv, and 6. GDS_plot_summaries.csv. The data contained in GDS_plot_summaries.csv were calculated from the GDS_plots.csv, GDS_FWD.csv, GDS_LWD.csv, GDS_Shrubs.csv, GDS_Trees.csv files using the R statistical software environment (R Core...
thumbnail
Fire can be a significant driver of permafrost change in boreal landscapes, altering the availability of soil carbon and nutrients that have important implications for future climate and ecological succession. However, not all landscapes are equally susceptible to fire-induced change. As fire frequency is expected to increase in the high latitudes, methods to understand the vulnerability and resilience of different landscapes to permafrost degradation are needed. Geophysical and other field observations reveal details of both near-surface (less than 1 m) and deeper (greater than 1 m) impacts of fire on permafrost along 14 transects that span burned-unburned boundaries in different landscape settings within interior...
thumbnail
We identified nine study site locations, representing three mature vegetation communities [Atlantic White Cedar (desired community), tall pine pocosin (desired community), and red maple/black gum mixed (undesired community)] with typical water depth within each vegetation type. All measurements were replicated three times (3 vegetation types x 3 replicates = 9 sites total). We installed four flux chambers at each site to collect GHG fluxes from all nine sites. We measured CO2 and CH4 using a Los Gatos Research Ultra Portable Greenhouse Gas Analyzer and two-part 760 cm2 flux chambers (chamber base remained in situ; chamber top was placed on the bottom only when sampling). We checked the gas fluxes on a monthly time-table...
thumbnail
In this study, we determined the carbon balance in the Great Dismal Swamp, a large forested peatland in the southeastern USA, which has been drained for over two hundred years and now is being restored through hydrologic management. We modeled future net ecosystem carbon balance over 100 years (2012 to 2112) using in situ field observations paired with simulations of water-table depth. The three scenarios used in the model were baseline conditions, flooded/wet conditions, and drained/dry conditions, which represent a range of potential management actions and climate conditions at the Great Dismal Swamp. This U.S. Geological Survey Data Release provides the modeled output estimating the net ecosystem carbon balance,...
thumbnail
We are provoding a set of table and maps that provides summary of ecosystem carbon balance (pools and fluxes) as simulated by the Dynamic Organic Soil version of the Terrestrial Ecosystem Model. Simulations are provided for the historical period from 1950 to 2009 and projections from 2010 to 2099, for the four main landscape conservation cooperative regions in Alaska (i.e. the Arctic, the Western Alaska, the North Pacific and the Northwest Boreal LCCs). Projections have been conducted at 1km-resolution for two set of climate scenarios for the A1B, B1 and A2 emission scenarios of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC-SRES). The two global circulation models used...
thumbnail
Plot-level field data were collected in the summer of 2014 to estimate aboveground and belowground biomass in the Great Dismal Swamp National Wildlife Refuge and Dismal Swamp State Park in North Carolina and Virginia. Data were collected at 85 plots. The location of the center of each plot was recorded with a Trimble ProXH global positioning system (GPS) and differentially corrected. Data files included 1: GDS_plots.csv, 2. GDS_FWD.csv, 3. GDS_LWD.csv, 4. GDS_Shrubs.csv, 5. GDS_Trees.csv, and 6. GDS_plot_summaries.csv. The data contained in GDS_plot_summaries.csv were calculated from the GDS_plots.csv, GDS_FWD.csv, GDS_LWD.csv, GDS_Shrubs.csv, GDS_Trees.csv files using the R statistical software environment (R Core...
thumbnail
We identified nine study site locations, representing three mature vegetation communities [Atlantic White Cedar (desired community), tall pine pocosin (desired community), and red maple/black gum mixed (undesired community)] with typical water depth within each vegetation type. All measurements were replicated three times (3 vegetation types x 3 replicates = 9 sites total). We installed four flux chambers at each site to collect GHG fluxes from all nine sites. We measured CO2 and CH4 using a Los Gatos Research Ultra Portable Greenhouse Gas Analyzer and two-part 760 cm2 flux chambers (chamber base remained in situ; chamber top was placed on the bottom only when sampling). We checked the gas fluxes on a monthly time-table...


    map background search result map search result map Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2015 Alaska Land Carbon Assessment Alaska Land Carbon Assessment Data Soil flux (CO2, CH4), soil temperature, and soil moisture measurements at the Great Dismal Swamp National Wildlife Refuge (2015 - 2017) Soil flux (CO2, CH4), soil temperature, and soil moisture measurements at the Great Dismal Swamp National Wildlife Refuge (2015 - 2017) Great Dismal Swamp field measurements for aboveground and belowground biomass Great Dismal Swamp field measurements for aboveground and belowground biomass Model parameters and output of net ecosystem carbon balance for the Great Dismal Swamp, Virginia and North Carolina, USA Borehole Nuclear Magnetic Resonance Inverted Models; Alaska, 2015 Alaska Land Carbon Assessment Data Alaska Land Carbon Assessment