Skip to main content
Advanced Search

Filters: partyWithName: North Central CASC (X) > partyWithName: John B Bradford (X)

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers ( Show direct descendants )

13 results (9ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The future of dry forests around the world is uncertain given predictions that rising temperatures and enhanced aridity will increase drought-induced tree mortality. Using forest management and ecological restoration to reduce density and competition for water offers one of the few pathways that forests managers can potentially minimize drought-induced tree mortality. Competition for water during drought leads to elevated tree mortality in dense stands, although the influence of density on heat-induced stress and the durations of hot or dry conditions that most impact mortality remain unclear. Understanding how competition interacts with hot-drought stress is essential to recognize how, where and how much reducing...
Categories: Publication; Types: Citation
Aim Anticipating when and where changes in species' demographic rates will lead to range shifts in response to changing climate remains a major challenge. Despite evidence of increasing mortality in dry forests across the globe in response to drought and warming temperatures, the overall impacts on the distribution of dry forests are largely unknown because we lack comparable large-scale data on tree recruitment rates. Here, our aim was to develop range-wide population models for dry forest tree species (pinyon pine and juniper), quantifying both mortality and recruitment, to better understand where and under what conditions species range contractions are occurring. Location Western United States. Major taxa studied...
Categories: Publication; Types: Citation
Droughts are disproportionately impacting global dryland regions where ecosystem health and function are tightly coupled to moisture availability. Drought severity is commonly estimated using algorithms such as the standardized precipitation-evapotranspiration index (SPEI), which can estimate climatic water balance impacts at various hydrologic scales by varying computational length. However, the performance of these metrics as indicators of soil moisture dynamics at ecologically relevant scales, across soil depths, and in consideration of broader scale ecohydrological processes, requires more attention. In this study, we tested components of climatic water balance, including SPEI and SPEI computation lengths, to...
Categories: Publication; Types: Citation
Drought-induced tree mortality is predicted to increase in dry forests across the globe as future projections show hotter, drier climates. This could potentially result in large-scale tree die-offs, changes in species composition, and loss of forest ecosystem services, including carbon storage. While some studies have found that forest stands with greater basal areas (BA) have higher drought mortality, many have not evaluated the extent to which forests restored to lower densities via restoration activities affect drought mortality. The southwestern USA is particularly susceptible to tree mortality due to the predicted increases in temperature, drier soils, and forests with high density. Our objective was to evaluate...
Categories: Publication; Types: Citation
Pinyon–juniper (PJ) woodlands are an important component of dryland ecosystems across the US West and are potentially susceptible to ecological transformation. However, predicting woodland futures is complicated by species-specific strategies for persisting and reproducing under drought conditions, uncertainty in future climate, and limitations to inferring demographic rates from forest inventory data. Here, we leverage new demographic models to quantify how climate change is expected to alter population demographics in five PJ tree species in the US West and place our results in the context of a climate adaptation framework to resist, accept, or direct ecological transformation. Two of five study species, Pinus...
Categories: Publication; Types: Citation
thumbnail
Ecological drought impacts ecosystems across the U.S. that support a wide array of economic activity and ecosystem services. Managing drought-vulnerable natural resources is a growing challenge for federal, state and Tribal land managers. Plant communities and animal populations are strongly linked to patterns of drought and soil moisture availability. As a result, ecosystems may be heavily altered by future changes in precipitation and soil moisture that are driven by climate change. Although this vulnerability is well recognized, developing accurate information about the potential consequences of climate change for ecological drought is difficult because the soil moisture conditions that plants experience are...
Abstract (from ScienceDirect): Big sagebrush (Artemisia tridentata Nutt.) plant communities are found in western North America and comprise a mix of shrubs, forbs, and grasses. Climate, topography, and soil water availability are important factors that shape big sagebrush stand structure and plant community composition; however, most studies have focused on understanding these relationships at sites in a small portion of the big sagebrush region. Our goal was to characterize detailed stand structure and plant composition patterns and identify environmental variables related to those patterns by sampling 15 sites distributed across the western United States. In each site, we characterized stand structure at the individual...
Regeneration is an essential demographic step that affects plant population persistence, recovery after disturbances, and potential migration to track suitable climate conditions. Challenges of restoring big sagebrush (Artemisia tridentata) after disturbances including fire-invasive annual grass interactions exemplify the need to understand the complex regeneration processes of this long-lived, woody species that is widespread across the semiarid western U.S. Projected 21st century climate change is expected to increase drought risks and intensify restoration challenges. A detailed understanding of regeneration will be crucial for developing management frameworks for the big sagebrush region in the 21st century....
Categories: Publication; Types: Citation
thumbnail
Sagebrush steppe is one of the most widely distributed ecosystems in North America. Found in eleven western states, this important yet fragile ecosystem is dominated by sagebrush, but also contains a diversity of native shrubs, grasses, and flowering plants. It provides critical habitat for wildlife like pronghorn and threatened species such as the greater sage-grouse, and is grazed by livestock on public and private lands. However, this landscape is increasingly threatened by shifts in wildfire patterns, the spread of invasive grasses, and changing climate conditions. While sagebrush is slow to recover after fires, non-native grasses such as cheatgrass thrive in post-fire conditions and the spread of these species...
Climate change is expected to alter the distribution and abundance of tree species, impacting ecosystem structure and function. Yet, anticipating where this will occur is often hampered by a lack of understanding of how demographic rates, most notably recruitment, vary in response to climate and competition across a species range. Using large-scale monitoring data on two dry woodland tree species (Pinus edulis and Juniperus osteosperma), we develop an approach to infer recruitment, survival, and growth of both species across their range. In doing so, we account for ecological and statistical dependencies inherent in large-scale monitoring data. We find that warming and drying conditions generally lead to declines...
Categories: Publication; Types: Citation
Climate change is expected to alter the distribution and abundance of tree species, impacting ecosystem structure and function. Yet, anticipating where this will occur is often hampered by a lack of understanding of how demographic rates, most notably recruitment, vary in response to climate and competition across a species range. Using large-scale monitoring data on two dry woodland tree species (Pinus edulis and Juniperus osteosperma), we develop an approach to infer recruitment, survival, and growth of both species across their range. In doing so, we account for ecological and statistical dependencies inherent in large-scale monitoring data. We find that drying and warming conditions generally lead to declines...
Categories: Publication; Types: Citation
Plant community response to climate change will be influenced by individual plant responses that emerge from competition for limiting resources that fluctuate through time and vary across space. Projecting these responses requires an approach that integrates environmental conditions and species interactions that result from future climatic variability. Dryland plant communities are being substantially affected by climate change because their structure and function are closely tied to precipitation and temperature, yet impacts vary substantially due to environmental heterogeneity, especially in topographically complex regions. Here, we quantified the effects of climate change on big sagebrush (Artemisia tridentata...
Categories: Publication; Types: Citation
Simulation models are valuable tools for estimating ecosystem response to environmental conditions and are particularly relevant for investigating climate change impacts. However, because of high computational requirements, models are often applied over a coarse grid of points or for representative locations. Spatial interpolation of model output can be necessary to guide decision-making, yet interpolation is not straightforward because the interpolated values must maintain the covariance structure among variables. We present methods for two key steps for utilizing limited simulations to generate detailed maps of multivariate and time series output. First, we present a method to select an optimal set of simulation...
Categories: Publication; Types: Citation


    map background search result map search result map Improving the Success of Post-Fire Adaptive Management Strategies in Sagebrush Steppe Developing High-Resolution Soil Moisture Projections for the Contiguous U.S. Improving the Success of Post-Fire Adaptive Management Strategies in Sagebrush Steppe Developing High-Resolution Soil Moisture Projections for the Contiguous U.S.