Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > National CASC > FY 2008 Projects > Fate of Endangered Species in San Francisco Bay Tidal Marshes with Sea-Level Rise ( Show direct descendants )

28 results (45ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___National CASC
____FY 2008 Projects
_____Fate of Endangered Species in San Francisco Bay Tidal Marshes with Sea-Level Rise
View Results as: JSON ATOM CSV
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
[Excerpt from Introduction] "The San Francisco Bay Estuary supports a large and diverse bird community. More than 50% of most Pacific flyway diving duck populations are found in the Estuary during the winter months (Trost 2002; U.S. Fish and Wildlife Service 2002). San Francisco Bay has been designated as a site of international importance for shorebirds (Western Hemisphere Shorebird Reserve Network), supporting millions of individuals (Morrison et al. 2001; Takekawa et al. 2001; Warnock et al. 2002), including species that use tidal marsh habitats. In total, the Bay’s tidal marshes support at least 113 bird species that represent 31 families (Takekawa et al., in press)..."
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
This highlight for the project "Fate of Endangered Species in San Francisco Bay Tidal Marshes with Sea Level Rise", was featured as a Top Story on the USGS Website on May 28, 2013.
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
Abstract (from SpringerLink): Salt marsh-dependent species are vulnerable to impacts of sea-level rise (SLR). Site-specific differences in ecogeomorphic processes result in different SLR vulnerabilities. SLR impacts to Ridgway’s rail (Rallus obsoletus) of Southern California (SC) and San Francisco Bay (SF), U.S.A. could foreshadow SLR effects on other coastal endemic species. Salt marsh vulnerabilities to SLR were forecasted across 14 study sites using the Wetland Accretion Rate Model of Ecosystem Resilience, which accounts for changes in above and belowground marsh processes. Changes in suitable habitat for rail were projected with MaxEnt. Under a high (166 cm/100 yr) SLR scenario, current extent of suitable habitat...
Categories: Publication; Types: Citation
Abstract (from http://link.springer.com/article/10.1007%2Fs12237-013-9725-x): We evaluated the biogeomorphic processes of a large (309 ha) tidal salt marsh and examined factors that influence its ability to keep pace with relative sea-level rise (SLR). Detailed elevation data from 1995 and 2008 were compared with digital elevation models (DEMs) to assess marsh surface elevation change during this time. Overall, 37 % (113 ha) of the marsh increased in elevation at a rate that exceeded SLR, whereas 63 % (196 ha) of the area did not keep pace with SLR. Of the total area, 55 % (169 ha) subsided during the study period, but subsidence varied spatially across the marsh surface. To determine which biogeomorphic and spatial...
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000
thumbnail
Information about these images can be found in the Final Report for Sea-level Rise Response Modeling for San Francisco Bay Estuary Tidal Marshes. Site-specific data are available by request. Contact: Dr. John Y. Takekawa, USGS Western Ecological Research Center, San Francisco Bay Estuary Field Station, 505 Azuar Dr. Vallejo, Calif. 94592, 707-562-2000