Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2012 Projects ( Show direct descendants )

1,305 results (15ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
This paper introduces the analyses of the potential impacts of climate change on the city of Chicago and the Great Lakes region and potential response options that provide the basis for this special issue. Covering projected changes in climate and hydrology, this collection of studies first estimates the potential impacts of climate change on human health, natural ecosystems, water resources, energy, and infrastructure in the city of Chicago and the surrounding Great Lakes region. A consistent set of future climate projections have been used as the basis for each analysis, which together provide a vivid impression of the consequences likely to result under the SRES higher (A1FI) as compared to the lower (B1) emission...
Agricultural residues have been identified as a significant potential resource for bioenergy production, but serious questions remain about the sustainability of harvesting residues. Agricultural residues play an important role in limiting soil erosion from wind and water and in maintaining soil organic carbon. Because of this, multiple factors must be considered when assessing sustainable residue harvest limits. Validated and accepted modeling tools for assessing these impacts include the Revised Universal Soil Loss Equation Version 2 (RUSLE2), the Wind Erosion Prediction System (WEPS), and the Soil Conditioning Index. Currently, these models do not work together as a single integrated model. Rather, use of these...
Adequate knowledge on the movement of nutrients under various agricultural practices is essential for developing remedial measures to reduce nonpoint source pollution. Mathematical models, after extensive calibration and validation, are useful to derive such knowledge and to identify site-specific alternative agricultural management practices. A spatial-process model that uses GIS and ADAPT, a field scale daily time-step continuous water table management model, was calibrated and validated for flow and nitrate-N discharges from a 365 ha agricultural watershed in central Iowa, in the Midwestern United States. This watershed was monitored for nitrate-N losses from 1991 to 1997. Spatial patterns in crops, topography,...
Soil organic carbon (SOC) is a biophysical parameter, which is also directly linked to above ground land use and land cover (LULC). Currently changes in LULC and variations in SOC often are studied and modeled separately. However, both are conjoined and should be seen as part of a cascading ecosystem framework. This is not only true for SOC but also for other biophysical parameters which are governed by human activities. At a watershed scale, this relationship is exceptionally important and the focus should be towards studying the impact of LULC change on the levels of SOC in spatially explicit terms. To advance knowledge on this front, we studied transformations of LULC, erosion and SOC from the start of settled...
This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHL sub(FG)), coarse-grained stable substrate as in rock or wood (CHL sub(CG)), and water column (CHL sub(S)). Stream and riparian habitat were characterized at each site. TP ranged from 0.004-2.69mg/l and TN from 0.15-21.5mg/l,...
[[Abstract ][Carbon (C) and nitrogen (N) are strongly coupled across ecosystems due to stoichiometrically balanced assimilatory demand as well as dissimilatory processes such as denitrification. Microorganisms mediate these biogeochemical cycles, but how microbial communities respond to environmental changes, such as dissolved organic carbon (DOC) availability, and how those responses impact coupled biogeochemical cycles in streams is not clear. We enriched a stream in central Indiana with labile DOC for 5 days to investigate coupled C and N cycling. Before, and on day 5 of the enrichment, we examined assimilatory uptake and denitrification using whole-stream [15]N-nitrate tracer additions and short-term nitrate...
Land use land cover (LULC) plays an important role in influencing the spatial intensity of water erosion which is the primary governor of horizontal translocation of soil organic carbon (SOC). The fate of redistributed SOC through erosion remains debatable and the mineralization rate of exposed SOC protected in soil aggregates is the major focus of this argument. Cohesive spatially explicit modeling of SOC and erosion can potentially reduce some of the controversy. To this end we simulated erosion/deposition, and photosynthetic (in situ) flux of SOC in a small watershed of ~ 28.42 ha, located in the Big Creek basin of southern Illinois. The main objectives of this research were: (a) to study erosion and deposition...
Evaluation of the applicability and validity of hydrologic simulation models for various cropping systems in different hydrogeologic and soil conditions is needed for a range of spatial scales. We calibrated and tested the ADAPT model for simulating streamflow from 552 to 1,985 km2 watersheds in central Illinois, where more than 79 percent of the land is used for maize-soybean production and tile drainage is common. Model calibration was performed with a seven year period (1987 through1993) of measured streamflow from one of the watersheds, and model testing was done using independent weather and measured streamflow data from the two neighboring watersheds for the same seven year period. Simulations of annual streamflow...
In response to fish decline, many federal and state agencies (e.g., National Marine Fisheries Service (NMFS), United States Department of Agriculture (USDA), United States Bureau Reclamation (USBR), United States Forest Service (USFS), Department of Fish and Wildlife (DFW), United States Department of Energy and United States Army Corps of Engineers (USACE)) have employed management plans in the last twenty to thirty years to augment fish populations and other aquatic organisms by improving stream habitats. Most of the restoration efforts have focused on the enhancement of the stream corridors to restore habitat quality variables (e.g., pool-riffle sequence, depth, shade) and river geomorphologic characteristics...
The relatively young, low-relief landscape of northern Indiana is characterized by poorly drained, glacially derived soils and hydrologically isolated surface depressions. In the last century, installation of subsurface drainage networks has lowered the naturally high seasonal water table and made arable some of the most fertile land in the world. The purpose of this research was to quantify the interaction of soil hydrologic properties, subsurface drainage, and surface depressions on the generation of peak streamflow as well as the temporal distribution of stream discharge following rain events in a small, agricultural watershed. Several geographic information system (GIS) techniques were used to digitally represent...
Nitrate-nitrogen export from the Raccoon River watershed in west-central Iowa is among the highest in the United State and contributes to impairment of downstream water quality. We examined a rare long-term record of streamflow and nitrate concentration data (1972–2000) to evaluate annual and seasonal patterns of nitrate losses in streamflow and baseflow from the Raccoon River. Combining hydrograph separation with a load estimation program, we estimated that baseflow contributes approximately two-thirds (17.3 kg/ha) of the mean annual nitrate export (26.1 kg/ha). Baseflow transport was greatest in spring and late fall when baseflow contributed more than 80% of the total export. Herein we propose a ‘baseflow enrichment...
Degradation of water quality is the major health concern for lakes and reservoirs in the central regions of the United States as a result of heavily devoted agricultural production. A vital key to the development of a reservoir management strategy is to identify nutrient loading that describes associated water quality conditions in reservoirs. This study integrated AnnAGNPS watershed and BATHTUB lake models to simulate actual lake water quality conditions of Cheney Reservoir, KS, and demonstrated the use of the coupled model for simulating lake response to changes in different watershed land use and management scenarios. The calibrated current-conditions model simulated in-lake reductions as much as 52% for TN,...
An individual-based, spatially explicit population model was used to predict the consequences of future land-use alternatives for populations of four amphibian species in two central Iowa (midwest USA) agricultural watersheds. The model included both breeding and upland habitat and incorporated effects of climatic variation and demographic stochasticity. Data requirements of the model include life history characteristics, dispersal behavior, habitat affinities, as well as land use and landcover in geographic information systems databases. Future scenarios were ranked according to change in breeder abundance, saturation, and distribution, compared to baseline conditions. Sensitivity of simulation results to changes...
Manure deep-pits are commonly used to store manure at confined animal feeding operations. However, previous to this study little information had been collected on the impacts of deep-pits on groundwater quality to provide science-based guidance in formulating regulations and waste management strategies that address risks to human health and the environment. Groundwater quality has been monitored since January 1999 at two hog finishing facilities in Illinois that use deep-pit systems for manure storage. Groundwater samples were collected on a monthly basis and analyzed for inorganic and bacteriological constituent concentrations. The two sites are located in areas with geologic environments representing different...
Nitrogen (N) losses from agriculture are negatively impacting groundwater, air, and surface water quality. National, state, and local policies and procedures that can mitigate these problems are needed. Market-based approaches where waste treatment plants (point sources) can purchase nutrient credits from upstream agricultural operations (non-point sources) to meet their National Pollutant Discharge Elimination System permit requirements within the Clean Water Act are being explored. This paper reviews these market-based approaches for enhancing air and water quality at a lower cost than simple command-and-control regulation, and describes new tools that are being developed, such as Nitrogen Trading Tool (NTT),...
Global change and habitat fragmentation are critical issues in our society. While considerable progress has been made in these issues worldwide, the unique features of the agroecosystems in the Great Plains have not been given enough attention. In this region, croplands occupy the majority of the landscape, forming the mosaics with linear riparian zones and shelterbelts. These three elements play different roles in the maintenance of biodiversity, and their continued effectiveness under a changing climate is critical to maintaining a healthy and productive agricultural ecosystem. This article evaluates current research and discusses future directions. The goal is to provide a scientific base for future conservation...
Subsurface drainage is a common practice in many agricultural watersheds in the Mid-Western region of the United States. A typical drainage system in east central Illinois is not spaced in a parallel manner, but the subsurface drain lines are laid out in a random and irregular fashion. These subsurface drain lines most often discharge into numerous man-made drainage channels, which ultimately drain to the rivers and the reservoirs. The Little Vermilion River (LVR) watershed in east central Illinois, USA is an example of a watershed with altered hydrology from subsurface drainage systems. A continuous monitoring study has been conducted from 1991 to 2003 on this watershed to quantify the effects of cropping management...
Balancing the amount of N needed for optimum plant growth while minimizing the NO3 that is transported to ground and surface waters remains a major challenge for everyone attempting to understand and improve agricultural nutrient use efficiency. Our objectives for this review are to examine how changes in agricultural management practices during the past century have affected N in midwestern soils and to identify the types of research and management practices needed to reduce the potential for nonpoint NO3 leakage into water resources. Inherent soil characteristics and management practices contributing to nonpoint NO3 loss from midwestern soils, the impact of NO3 loading on surface water quality, improved N management...
The influence of specific stressors, such as nutrient enrichment and physical habitat degradation, on biotic integrity requires further attention in Midwestern streams. We sampled 53 streams throughout Illinois and examined relationships between macroinvertebrate community structure and numerous physicochemical parameters. Streams were clustered into four major groups based on taxa dissimilarity. Habitat quality and dissolved nutrients were responsible for separating the major groups in a nonmetric multidimensional scaling ordination. Furthermore, the alignment of environmental factors in the ordination suggested there was a habitat quality-nutrient concentration gradient such that streams with high-quality habitats...
Agricultural land use is a key driver of water quality through its impact on nutrient flows across landscapes. Phosphorus (P) is commonly applied to croplands in fertilizers and manure to improve soil fertility, but excess P can accumulate in soils and may accelerate eutrophication of waterbodies. Balancing agricultural P inputs with crop requirements is therefore crucial for water quality. A historical study of agricultural land use and water quality in the Saint Lawrence River sub-basin (574,000 km super(2)) is presented here, focusing on agricultural P budgets. These budgets, calculated each decade from 1901 to 2001 for the sub-basin and its tributary watersheds, reveal that while P management has improved in...