Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > USGS National Research Program > USGS National Research Program Projects > Aqueous Crystal Growth and Dissolution Kinetics ( Show direct descendants )

44 results (92ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__USGS National Research Program
___USGS National Research Program Projects
____Aqueous Crystal Growth and Dissolution Kinetics
View Results as: JSON ATOM CSV
Mercury and organic carbon concentrations vary dynamically in streamwater at the Sleepers River Research Watershed in Vermont, USA. Total mercury (THg) concentrations ranged from 0.53 to 93.8 ng/L during a 3-year period of study. The highest mercury (Hg) concentrations occurred slightly before peak flows and were associated with the highest organic carbon (OC) concentrations. Dissolved Hg (DHg) was the dominant form in the upland catchments; particulate Hg (PHg) dominated in the lowland catchments. The concentration of hydrophobic acid (HPOA), the major component of dissolved organic carbon (DOC), explained 41–98% of the variability of DHg concentration while DOC flux explained 68–85% of the variability in DHg flux,...
Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA...
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10–16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM ( n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation...
Calcite crystallization rates are characterized using a constant solution composition at 25° C, pH=8.5, and calcite supersaturation (Ω) of 4.5 in the absence and presence of fulvic acids isolated from Big Soda Lake, Nevada (BSLFA), and a fulvic acid from the Suwannee River, Georgia (SRFA). Rates are also measured in the presence and absence of low-molar mass, aliphatic-alicyclic polycarboxylic acids (PCA). BSLFA inhibits calcite crystal-growth rates with increasing BSLFA concentration, suggesting that BSLFA adsorbs at growth sites on the calcite crystal surface. Calcite growth morphology in the presence of BSLFA differed from growth in its absence, supporting an adsorption mechanism of calcite-growth inhibition...
A detailed study of the climatic significance of δ18O in precipitation was completed on a 1500 km southwest-northeast transect of the Tibetan Plateau in central Asia. Precipitation samples were collected at four meteorological stations for up to 9 years. This study shows that the gradual impact of monsoon precipitation affects the spatial variation of δ18O-T relationship along the transect. Strong monsoon activity in the southern Tibetan Plateau results in high precipitation rates and more depleted heavy isotopes. This depletion mechanism is described as a precipitation “amount effect” and results in a poor δ18O-T relationship at both seasonal and annual scales. In the middle of the Tibetan Plateau, the effects...
Categories: Publication; Types: Citation
Overview -- This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin during water year 2001 (October 2000 through September 2001). A broad range of chemical and biological analyses from three sets of samples are presented. First, samples were collected throughout the year at five stations in the basin (three on the mainstem Yukon River, one each on the Tanana and Porcupine Rivers). Second, fecal indicators were measured on samples from drinking-water supplies collected near four villages. Third, sediment cores from five lakes throughout the Yukon Basin were sampled to reconstruct historic trends in the atmospheric deposition of trace elements and hydrophobic organic...
Categories: Publication; Types: Citation
OVERVIEW: This report contains water-quality and sediment-quality data from samples collected in the Yukon River Basin from March through September during the 2005 water year (WY). Samples were collected throughout the year at five stations in the basin (three on the main stem Yukon River, one each on the Tanana and Porcupine Rivers). A broad range of physical, chemical, and biological analyses are presented. This is the final report in a series of five USGS Open-File Reports spanning five WYs, from October 2000 through September 2005. The previous four reports are listed in the references (Schuster, 2003, 2005a, 2005b, 2006). Water-quality and sediment-quality data from samples collected on the Yukon River and...
Categories: Publication; Types: Citation
INTRODUCTION In 2001, the U.S. Geological Survey (USGS) began a water-quality study of the Yukon River. The Yukon River Basin (YRB), which encompasses 330,000 square miles in northwestern Canada and central Alaska (fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is more than 1,800 miles long and is one of the last great uncontrolled rivers in the world, and is essential to the eastern Bering Sea and Chukchi Sea ecosystems, providing freshwater runoff, sediments, and nutrients (Brabets and others, 2000). Despite its remoteness, recent studies (Hinzman and others, 2005; Walvoord and Striegl, 2007) indicate the YRB is changing. These changes likely are in response to a warming...
Categories: Publication; Types: Citation