Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) ( Show direct descendants )

1,951 results (16ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Aerial photographs for Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial photographs for Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. All CIR aerial photos were orthorectified, mosaicked, compressed, and served via the UMESC Internet site. The CIR aerial photos were interpreted and automated using a 31-class LTRMP vegetation classification. The 2010/11 LCU databases were prepared by or under the supervision...
thumbnail
The Minnesota Department of Natural Resources (MNDNR) has been quantitatively sampling a mussel bed in West Newton Chute (a side channel in Navigation Pool 5 of the Upper Mississippi River, UMR) annually since 2008. Briefly, ~200 systematically-placed 0.25 m2 quads are sampled annually; divers excavate substrates to a depth of ~15 cm and place material into a 6 mm mesh bag. Mussels are identified to species, aged via external annuli, measured for shell length, and sexed. From 2008-2016, this mussel bed contained 12-16 live species, had densities that ranged from 4-10/m2, and juveniles (≤ 5 years old) comprised 3-18% of the assemblage. Because this assemblage was well characterized, it represented an excellent location...
Increased nutrient and sediment loading have caused observable changes in algal community composition, and thereby, altered the quality and quantity of food resources available to native freshwater mussels. Our objective was to characterize the relationship between nutrient conditions and mussel food quality and examine the effects on the fatty acid composition, growth and survival of juvenile mussels. Juvenile Lampsilis cardium and L. siliquoidea were deployed in cages for 28 d at four riverine and four lacustrine sites in the lower St. Croix River, Minnesota/Wisconsin, USA. Mussel foot tissue and food resources (four seston fractions and surficial sediment) were analyzed for quantitative fatty acid (FA) composition....
thumbnail
LiDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning and inertial measurement technologies; LiDAR instruments are able to make highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation.
Determine the oxytetracycline hydrochloride concentrations in water samples provided by the Bozeman Fish Technology Center taken during Pennox 343 efficacy studies.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
As part of Upper Mississippi River Restoration (UMRR), the U.S. Army Corps of Engineers (USACE) is conducting a study to understand what environmental factors are contributing to the failure of floodplain forests to regenerate. This dataset uses lidar derivatives to identify broken forest canopy along the Mississippi River and Illinois River. A broken forest refers to an area that has a canopy height of greater than or equal to 10 meters. From this layer, forest canopy gaps can be identified by locating areas within the broken forest that have at least a 9.144 meter radius, or a 1-tree gap.
thumbnail
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation...
This dataset consists of digital scans of color infrared aerial photography from the Upper Mississippi River collected in 1975.
thumbnail
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation...
thumbnail
Hydroacoustic (sonar) data were collected for the Mississippi, St. Croix, and Minnesota Rivers for the development of high-resolution bathymetry and sidescan imagery. Small areas containing priority mussel habitat had additional collection efforts to map water velocities and bottom composition. Combining these data in a GIS can provide key components to characterizing physical benthic habitat for native mussels in a riverine environment. These information needs were highly desired by the National Park Service to more accurately assess environmental factors that influence native mussel distribution. The collaborative effort was funded by the Legislative-Citizen Commission on Minnesota Resources (LCCMR) Environment...
thumbnail
In the late 1880's and early 1900's the Mississippi River Commission (MRC) conducted an extensive high-resolution survey of the Mississippi River from Cairo, Illinois to Minneapolis, Minnesota. These data were published as a series of 89 survey maps and index. In the 1990's, the Upper Midwest Environmental Sciences Center (UMESC) in conjunction with the US Army Corps of Engineers Upper Mississippi River Restoration- Environmental Management Program -- Long Term Resource Monitoring Program element (LTRMP) for the Upper Mississippi River automated the maps' land cover/use symbology to create a turn of the century/pre-impoundment land cover/use data set. Other data on the maps that were not automated include; elevation...
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS). Aerial images of Pools 1-13 Upper Mississippi River System and Pools, Alton-Marseilles, Illinois River were collected in color infrared (CIR) in August of 2010 at 8”/pixel and 16”/pixel respectively using a mapping-grade Applanix DSS 439 digital aerial camera. In August 2011, CIR aerial images of Pools 14-Open River South, Upper Mississippi River and Pools Dresden-Lockport, Illinois River were collected at 16”/pixel with the same camera. The CIR aerial images were interpreted and automated using a 31-class LTRM vegetation classification....
thumbnail
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. Area coverage for this data set is the Upper Mississippi River between Minneapolis, MN and Cairo, IL, and the Illinois...
The U.S. Geological Survey's Upper Midwest Environmental Sciences Center (UMESC) has created high-resolution land cover/use data sets for the Upper Mississippi River System (UMRS) from 1:15,000-scale color infrared aerial photos. These data have been used to create a variety of products, one of which is a data set used to classify aquatic areas. The 1989 and 1991 aquatic areas data sets were created by first generalizing the available land cover/use data into a land/water data set, then reinterpreting the aerial photography within the areas classified as water to determine the type of aquatic area. The geographic extent of the UMRS is the Mississippi River floodplain from Cairo, IL to Minneapolis, MN and the Illinois...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The Fox River transports elevated loads of nitrogen and phosphorus to Lake Michigan. The increased concentration of N and P causes eutrophication of the lake, creating hypoxic zones and damaging the lake ecosystem.To decrease loading, best management practices (BMPs) have been implemented in the uplands of the basin. Little work has been done, however, to reduce nutrient concentrations in the river. Rivers are capable of removing nutrients through biotic uptake and sediment burial and are able to remove N through denitrification. Identifying and managing these locations of increased nutrient cycling known as “hot spots” may be another mechanism for nutrient mitigation.Our objective was to identify hot spots of N...
The code included here was used to analyze data from sediment incubations conducted using sediment cores collected from the Fox and Duck rivermouths (near Green Bay, Lake Michigan).
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.


map background search result map search result map UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 5a 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 12 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 25 Mississippi River, Pool 19n Nauvoo Quad, 0.5m Contours UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 08 UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a Great Lakes Restoration Initiative Project 49 Fox River Basin 2016 and 2017 Data 2018 Western Lake Erie 4-Band Mosaics - 20180823_Elmore Illinois River, Dresden, Sidescan Image Mosaic June 2018 2018 Western Lake Erie 4-Band Mosaics - 20180824_MetzgerMarsh 2018 Western Lake Erie 4-Band Mosaics - 20180824_Oregon Estimation of vital rates to assess the relative health of mussel resources in the Upper Mississippi River System: Data Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River St. Croix National Scenic Riverway, ADCP Flow Diffusion of the St. Croix River near Hudson, WI, 20181004 St. Croix National Scenic Riverway, ADCP Flow Diffusion of the St. Croix River near Hudson, WI, 20181004 2018 Western Lake Erie 4-Band Mosaics - 20180823_Elmore Mississippi River, Pool 19n Nauvoo Quad, 0.5m Contours 2018 Western Lake Erie 4-Band Mosaics - 20180824_MetzgerMarsh Estimation of vital rates to assess the relative health of mussel resources in the Upper Mississippi River System: Data Illinois River, Dresden, Sidescan Image Mosaic June 2018 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 5a UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 05a UMRR HNA-II 1989 Aquatic Areas - Upper Mississippi River System - Mississippi River Pool 08 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 12 UMRS LTRMP 2010/11 LCU Mapping -- Illinois River Marseillies Reach 1890's Land Cover/Use - Mississippi River Commission Surveys, Pool 25 Broken Forest Canopy Identified by Lidar for the Navigational Pool 13 of the Mississippi River UMRR HNA-II 2010/11 Aquatic Areas - Upper Mississippi River System - Mississippi River Open River 2 Great Lakes Restoration Initiative Project 49 Fox River Basin 2016 and 2017 Data