Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2013 Projects > Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy > Approved Products ( Show direct descendants )

16 results (68ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___North Central CASC
____FY 2013 Projects
_____Science and Forecasting to Inform Implementation of the Greater Yellowstone Coordinating Committee’s Whitebark Pine Management Strategy
______Approved Products
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The viability of the whitebark pine (Pinus albicaulis) species is under threat due to precipitously declining populations. This study investigates the sources of differing levels of concern about climate-driven effects on whitebark pine trees. It also investigates support for different Whitebark Pine (WBP) management strategies on federal public lands.
Abstract (from http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0111669): Projected climate change at a regional level is expected to shift vegetation habitat distributions over the next century. For the sub-alpine species whitebark pine (Pinus albicaulis), warming temperatures may indirectly result in loss of suitable bioclimatic habitat, reducing its distribution within its historic range. This research focuses on understanding the patterns of spatiotemporal variability for future projected P.albicaulis suitable habitat in the Greater Yellowstone Area (GYA) through a bioclimatic envelope approach. Since intermodel variability from General Circulation Models (GCMs) lead to differing predictions...
The North Central Climate Science Center Paleoenvironmental Database serves as an archive of Pleistocene proxy records, metadata and derivative products (e.g., chronologies, vegetation and climate reconstructions), and provides a resource for environmental research, facilitating data viewing, synthesis and joint analysis of multiproxy datasets. As of March 2014, the database consists of 1270 paleoenvironmental records, including proxies of climate (i.e., tree-rings, borehole temperatures, isotopes, diatoms, electrical conductivity, ice cores, loess accumulation), streamflow (i.e., tree rings), fauna (i.e., fossils), vegetation (i.e., pollen, plant macrofossils) and fire (i.e., tree-scars, charcoal).
Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests...
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions, wildlife habitat, watershed health, restoration concepts from a landscape perspective, and social and policy concerns. We provide...
Abstract (from http://www.islandpress.org/book/climate-change-in-wildlands): Scientists have been warning for years that human activity is heating up the planet and climate change is under way. In the past century, global temperatures have risen an average of 1.3 degrees Fahrenheit, a trend that is expected to only accelerate. But public sentiment has taken a long time to catch up, and we are only just beginning to acknowledge the serious effects this will have on all life on Earth. The federal government is crafting broad-scale strategies to protect wildland ecosystems from the worst effects of climate change. The challenge now is to get the latest science into the hands of resource managers entrusted with protecting...
Abstract (from OxfordAcademic): The whitebark pine (Pinus albicaulis Engelm.) tree species faces precipitously declining populations in many locations. It is a keystone species found primarily in high-elevation forests across the Western US. The species is an early responder to climate change and qualifies for endangered species protection. We use contingent valuation to estimate the public’s willingness to pay for management of the whitebark pine species. In contrast, previous work centres on valuing broader aspects of forest ecosystems or threats to multiple tree species. While only approximately half of the survey respondents have seen whitebark pine, the mean willingness to pay for whitebark pine management...
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We worked with a team of biologists and managers to identify management actions aimed at mitigating climate impacts to WBP. Identified actions were spatially allocated across...
Abstract (from http://www.sciencedirect.com/science/article/pii/S1574954115001466): Anticipating the ecological effects of climate change to inform natural resource climate adaptation planning represents one of the primary challenges of contemporary conservation science. Species distribution models have become a widely used tool to generate first-pass estimates of climate change impacts to species probabilities of occurrence. There are a number of technical challenges to constructing species distribution models that can be alleviated by the use of scientific workflow software. These challenges include data integration, visualization of modeled predictor–response relationships, and ensuring that models are reproducible...
Abstract (from British Ecological Society): As public land managers seek to adopt and implement conservation measures aimed at reversing or slowing the negative effects of climate change, they are looking to understand public opinion regarding different management strategies. This study explores drivers of attitudes towards different management strategies (i.e. no management, protection and restoration) for a low‐profile but keystone tree species, the whitebark pine Pinus albicaulis , in the Greater Yellowstone Ecosystem. Since the whitebark pine species has a range that traverses different federal land designations, we examine whether attitudes towards management strategies differ by jurisdiction (i.e. wilderness...
Categories: Publication; Types: Citation
Abstract (from http://www.aimspress.com/article/10.3934/environsci.2015.2.400): State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate...
Managing plant and wildlife species under climate change offers a substantial challenge. Federal agencies have adapted a framework for considering climate change when implementing management actions. This project was designed to demonstrate how elements of that framework, climate science, ecological forecasting, and natural resource management, can be linked to best maintain natural resources under climate change. The project focused on the whitebark pine (WBP) tree. This species occupies high mountain forests and uniquely provides foods and habitats for other species. WBP populations have undergone massive die-offs over the past decade due to pest outbreaks associated with climate warming. In the Greater Yellowstone...