Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2013 Projects ( Show direct descendants )

96 results (8ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This dataset represents a climate-informed management alternative for maintaining whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem. This data was developed for use in a landscape simulation modeling study aimed at evaluating how well alternative management strategies maintain whitebark pine populations under historical climate and future climate conditions. For the study, we developed three spatial management alternatives for whitebark pine in the Greater Yellowstone Ecosystem representing no active management, current management, and climate-informed management. These management alternatives were implemented in the simulaton model FireBGCv2 under historical climate and three future climate...
Abstract (from http://www.sciencedirect.com/science/article/pii/S0959378014000065): Climate change impacts threaten existing development efforts and achieving future sustainability goals. To build resilience and societal preparedness towards climate change, integration of adaptation into development is being increasingly emphasized. To date, much of the adaptation literature has been theoretical, reflecting the absence of empirical data from activities on the ground. However, the Funds established under the United Nations Framework Convention on Climate Change and managed by the Global Environment Facility, the Least Developed Countries Fund, the Special Climate Change Fund and the Strategic Priority for Adaptation,...
This report was submitted to the Colorado Energy Office in 2015 and was edited by Eric Gordon (University of Colorado Boulder) and Dennis Ojima (Colorado State University). It was based on a study that evaluated Colorado's climate vulnerability in the ecosystems, water, agriculture, energy, transportation, recreation/tourism, and public health sectors.
Categories: Publication; Types: Citation; Tags: North Central CASC
Abstract (from http://www.islandpress.org/book/climate-change-in-wildlands): Scientists have been warning for years that human activity is heating up the planet and climate change is under way. In the past century, global temperatures have risen an average of 1.3 degrees Fahrenheit, a trend that is expected to only accelerate. But public sentiment has taken a long time to catch up, and we are only just beginning to acknowledge the serious effects this will have on all life on Earth. The federal government is crafting broad-scale strategies to protect wildland ecosystems from the worst effects of climate change. The challenge now is to get the latest science into the hands of resource managers entrusted with protecting...
Abstract (from Diversity and Distributions): Aim Surrogate species can provide an efficient mechanism for biodiversity conservation if they encompass the needs or indicate the status of a broader set of species. When species that are the focus of ongoing management efforts act as effective surrogates for other species, these incidental surrogacy benefits lead to additional efficiency. Assessing surrogate relationships often relies on grouping species by distributional patterns or by species traits, but there are few approaches for integrating outputs from multiple methods into summaries of surrogate relationships that can inform decisionā€making. Location Prairie Pothole Region of the United States. Methods...
Projected suitable habitat models were constructed using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as comparison to current mapped habitats from SWReGAP landcover (USGS...
thumbnail
Through its Foundational Science Area (FSA) activities, the North Central Climate Science Center (CSC) aims to provide relevant and usable climate information to decision-makers and natural resource managers, so that they can better manage their natural and cultural resources under climate change. Research to meet this objective was implemented in 2013 through three FSAs: (1) Understanding and quantifying drivers of regional climate changes; (2) connecting climate drivers to management targets; and (3) characterizing adaptive capacity of stakeholder communities and informing management options. FSA 1 focused on developing targeted climate information for the North Central region, such as changes in air temperature...
Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates,...
Projected suitable habitat models were constructed using a set of presence points for the species derived from element occurrence and herbarium records, together with temperature, precipitation, and soil variables. The current distribution used modeled historic period (1970-2000) climate variables from the appropriate matching GCM model run. These model parameters were then used with projected climate data to get future (2020-2050) modeled suitable habitat for each scenario. Modeled past suitable habitat and modeled future suitable habitat are combined to show areas of change, using various thresholds to distinguish change categories, as well as comparison to current mapped habitats from SWReGAP landcover (USGS...
Abstract (from OxfordAcademic): The whitebark pine (Pinus albicaulis Engelm.) tree species faces precipitously declining populations in many locations. It is a keystone species found primarily in high-elevation forests across the Western US. The species is an early responder to climate change and qualifies for endangered species protection. We use contingent valuation to estimate the public’s willingness to pay for management of the whitebark pine species. In contrast, previous work centres on valuing broader aspects of forest ecosystems or threats to multiple tree species. While only approximately half of the survey respondents have seen whitebark pine, the mean willingness to pay for whitebark pine management...
The Prairie Pothole Region (PPR) in the northern Great Plains contains millions of wetlands that provide habitat for breeding and migrating birds. Although conservation and management largely focuses on protecting habitat for nesting ducks, other wetland-dependent birds also rely on this region. Land managers want to know whether habitat conserved for ducks provides habitat for other species and how these habitats will be affected by climate change. A primary goal of this research has been to assist managers in conserving areas that will provide habitat to a broad suite of species. We considered how climate change is likely to affect land-use patterns and agricultural conversion risk. We then predicted how climate...
Natural resource managers face the need to develop strategies to adapt to projected future climates. Few existing climate adaptation frameworks prescribe where to place management actions to be most effective under anticipated future climate conditions. We developed an approach to spatially allocate climate adaptation actions and applied the method to whitebark pine (WBP; Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). WBP is expected to be vulnerable to climate-mediated shifts in suitable habitat, pests, pathogens, and fire. We worked with a team of biologists and managers to identify management actions aimed at mitigating climate impacts to WBP. Identified actions were spatially allocated across...


map background search result map search result map Foundational Science Area Activities: Providing Relevant and Usable Climate Information to Resource Managers Spatial Prioritization of White Bark Pine Management Actions based on climate-informed management under the CESM1-CAM5, RCP 8.5 scenario, 2069-2099. Spatial Prioritization of White Bark Pine Management Actions based on climate-informed management under the CESM1-CAM5, RCP 8.5 scenario, 2069-2099. Foundational Science Area Activities: Providing Relevant and Usable Climate Information to Resource Managers