Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > South Central CASC > FY 2013 Projects ( Show direct descendants )

97 results (61ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Daily streamflow and reservoir water elevation data for modeled locations in the Red River Basin. Values reported are for 18 different GCM (Global Climate Model) / RCP (Representative Concentration Pathway) / GDM Downscaling scenarios. Climate data from each scenario was input into a Variable Infiltration Capacity (VIC) model, that output flow values. These values were then input into RiverWare, to determine the impacts on regulated flows, lake levels and water availability. RiverWare was used for this project, because of its ability to simulate water use, reservoir operations, and local/interstate regulations.
thumbnail
When climate models are developed, researchers test how well they replicate the climate system by using them to model past climate. Ideally, the model output will match the climate conditions that were actually recorded in the past, indicating that the model correctly characterizes how the climate system works and can be used to reliably project future conditions. However, this approach assumes that models that reliably project past climate conditions will accurately predict future climate conditions, even though the climate system might have changed. This research contributes to generating more reliable local-scale climate projections by testing the assumption that the climatological relationships which existed...
Abstract (from http://ascelibrary.org/doi/abs/10.1061/(ASCE)HE.1943-5584.0001282): A novel multisite cascading calibration (MSCC) approach using the shuffled complex evolution–University of Arizona (SCE-UA) optimization method, developed at the University of Arizona, was employed to calibrate the variable infiltration capacity (VIC) model in the Red River Basin. Model simulations were conducted at 35 nested gauging stations. Compared with simulated results using a priori parameters, single-site calibration can improve VIC model performance at specific calibration sites; however, improvement is still limited in upstream locations. The newly developed MSCC approach overcomes this limitation. Simulations using MSCC...
Summary of statistics, regression analyses, LOADEST regressions, mean annual flow-weighted concentrations/values, and Kendal tau trend analyses of flow-weighted constituent concentrations of dissolved chloride, suspended sediment, dissolved oxygen, pH, and Temperature values of water samples collected intermittently at USGS streamgages on the Canadian River or its tributaries from northeastern New Mexico, to Lake Eufaula in Oklahoma from 1949-2013. Water-quality data were retrieved from the USGS NWIS system in 2014.
thumbnail
This dataset contains the result of the bioclimatic-envelope modeling of nine bird species -- Northern/Masked Bobwhite Quail (Colinus virginianus), Scaled Quail (Callipepla squamata), Pinyon Jay (Gymnorhinus cyanocephalus), Juniper Titmouse (Baeolophus ridgwayi), Mexican Spotted Owl (Strix occidentalis lucida), Cassin’s Sparrow (Peucaea cassinii), Lesser Prairie-Chicken (Tympanuchus pallidicinctus), Montezuma Quail (Cyrtonyx montezumae), and White-tailed Ptarmigan (Lagopus leucurus) -- in the South Central US using the downscaled data provided by WorldClim. We used five species distribution models (SDM) including Generalized Linear Model, Random Forest, Boosted Regression Tree, Maxent, and Multivariate Adaptive...
Abstract (from http://link.springer.com/article/10.1007/s10584-016-1598-0): Empirical statistical downscaling (ESD) methods seek to refine global climate model (GCM) outputs via processes that glean information from a combination of observations and GCM simulations. They aim to create value-added climate projections by reducing biases and adding finer spatial detail. Analysis techniques, such as cross-validation, allow assessments of how well ESD methods meet these goals during observational periods. However, the extent to which an ESD method’s skill might differ when applied to future climate projections cannot be assessed readily in the same manner. Here we present a “perfect model” experimental design that quantifies...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
thumbnail
The northern Gulf of Mexico coast spans two major climate gradients and represents an excellent natural laboratory for developing climate-influenced ecological models. In this project, we used these zones of remarkable transition to develop macroclimate-based models for quantifying the regional responses of coastal wetland ecosystems to climate variation. In addition to providing important fish and wildlife habitat and supporting coastal food webs, these coastal wetlands provide many ecosystem goods and services including clean water, stable coastlines, food, recreational opportunities, and stored carbon. Our objective was to examine and forecast the effects of macroclimatic drivers on wetland ecosystem structure...
This project evaluated bioclimatic envelope models (from 19 bioclimate variables) in order to project availability of suitable bioclimatic conditions for 20 terrestrial species, identified as species of concern (SOC) in the South Central United States. We used various climate projections derived from general circulation models (GCMs) and they were post-processed via application of a simple statistical downscaling method.We compared future projected climate envelope suitability results produced from combinations of four GCMs and two greenhouse gas concentration trajectories [Representative Concentration Pathways (RCPs) 2.6 and 8.5] for two future time periods (2050: average for 2041 to 2060 and 2070: average for...
In 2015, the Red River Basin experienced the tail end of a severe drought followed by exceptional flooding, both of which cause impacts to industry, agriculture, tourism and the environment. Scientists, water managers and other stakeholders are interested in knowing what is in store for the future of the Red River Basin. Researchers at the University of Oklahoma and the Choctaw and Chickasaw Nations developed projections of future hydrology for the Red River Basin under possible future climate conditions. A methodology was developed for using current state of the art Global Climate Models (GCM) and applying them on a scale suitable for hydrologic models, ultimately making the information useful to water managers...
Modeling of watershed response to normal and extreme climatic conditions or to changes in the physical conditions of a watershed requires the simulation of a variety of complex hydrologic processes and process interactions. Some of these processes are well understood at a point or for a small area; others are poorly understood at all scales. Increasing spatial and temporal variability in climate and watershed characteristics with an increase in watershed area adds significantly to the degree of difficulty in investigating and understanding these processes. Research is needed to better define these processes and to develop techniques to simulate these processes and their interactions at all watershed scales. Project...
thumbnail
Coastal wetlands are one of the most economically valuable ecosystems in the world. In the United States, the ecosystem services provided by wetlands are worth billions of dollars and include flood protection, erosion control, seafood, water quality enhancement, carbon storage, recreation, and wildlife habitat. Unfortunately, these ecosystems are also highly sensitive to changing climate conditions. Past research on climate impacts to coastal wetlands have concentrated primarily on sea-level rise, largely ignoring the important influence of changing temperature and precipitation patterns. Understanding the impact of temperature and precipitation on coastal wetlands can help natural and cultural resource managers...


map background search result map search result map Testing Downscaled Climate Projections: Is Past Performance an Indicator of Future Accuracy? Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) Projected future bioclimate-envelope suitability for bird species in South Central USA Projected future bioclimate-envelope suitability for bird species in South Central USA U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Vegetation Data Section 1 (2013-2014) U.S. Gulf of Mexico coast (TX, MS, AL, and FL) Macroclimate Landscape and Climate Data (2013-2014) Establishing a Foundation for Understanding Climate Change Impacts on Coastal Wetland Ecosystems Testing Downscaled Climate Projections: Is Past Performance an Indicator of Future Accuracy?