Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2014 Projects > Projecting Changes in Snow, Lake Ice, and Winter Severity in the Great Lakes Region for Wildlife-Based Adaptation Planning ( Show direct descendants )

11 results (14ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Northeast CASC
____FY 2014 Projects
_____Projecting Changes in Snow, Lake Ice, and Winter Severity in the Great Lakes Region for Wildlife-Based Adaptation Planning
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Abstract (from Wiley Online Library): Annual distributions of waterfowl during the nonbreeding period can influence ecological, cultural, and economic relationships. We used previously developed Weather Severity Indices (WSI) that explained migration by dabbling ducks in eastern North America and weather data from the North American Regional Reanalysis to develop an open-access internet-based tool (i.e., WSI web app) to visualize and query WSI data. We used data generated by the WSI web app to determine whether the weather known to elicit southerly migration by dabbling ducks had changed, from October to April 1979 to 2013. We detected that the amount of area in the Mississippi and Atlantic Flyways with weather...
We developed high-resolution climate projections for the mid- and late 21st century across the Great Lakes region, including the Midwest and Northeast United States and southern Canada. We applied a regional climate model that addresses future changes in Great Lakes’ water temperatures, ice cover, and evaporation, which critically impact lake-effect snowfall. This new dataset is highly valuable, given that most global climate models applied in the reports of the Intergovernmental Panel on Climate Change and National Climate Assessment either completely lack the Great Lakes or largely under-represent their coverage and impacts. After quantifying projected changes in weather severity based on air temperature and snow...
thumbnail
Six global climate models (GCMs) from the Coupled Model Intercomparison Project Phase Five (CMIP5) were dynamically downscaled to 25-km grid spacing according to the representative concentration pathway 8.5 (RCP8.5) scenario using the International Centre for Theoretical Physics (ICTP) Regional Climate Model Version Four (RegCM4), interactively coupled to a 1D lake model to represent the Great Lakes. These GCMs include the Centre National de Recherches Meteorologiques Coupled Global Climate Model Version Five (CNRM-CM5), the Model for Interdisciplinary Research on Climate Version Five (MIROC5), the Institut Pierre Simon Laplace Coupled Model Version Five-Medium Resolution (IPSL-CM5-MR), the Meteorological Research...
White-tailed deer (Odocoileus virginianus) in Michigan’s Upper Peninsula exist on the edge of their climate tolerance for cold temperatures and deep snow, especially in the lake effect snow zones of the north half of the peninsula. Each year, deer migrate to conifer swamps to escape the deep snow. Many of these swamps are managed by the Michigan Department of Natural Resources (DNR) as critical deer wintering complexes (DWC), and there has been an effort to acquire and protect additional acres of DWC as deer habitat. Conifer swamps are also managed for many other values, including timber products, which are difficult or impossible to access during mild winters. Recent warming trends have resulted in a 71% decrease...
Projections of regional climate, net basin supply (NBS), and water levels are developed for the mid- and late twenty-first century across the Laurentian Great Lakes basin. Two state-of-the-art global climate models (GCMs) are dynamically downscaled using a regional climate model (RCM) interactively coupled to a one-dimensional lake model, and then a hydrologic routing model is forced with time series of perturbed NBS. The dynamical downscaling and coupling with a lake model to represent the Great Lakes create added value beyond the parent GCM in terms of simulated seasonal cycles of temperature, precipitation, and surface fluxes. However, limitations related to this rudimentary treatment of the Great Lakes result...
Abstract (from http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167506): Projected changes in the relative abundance and timing of autumn-winter migration are assessed for seven dabbling duck species across the Mississippi and Atlantic Flyways for the mid- and late 21st century. Species-specific observed relationships are established between cumulative weather severity in autumn-winter and duck population rate of change. Dynamically downscaled projections of weather severity are developed using a high-resolution regional climate model, interactively coupled to a one-dimensional lake model to represent the Great Lakes and associated lake-effect snowfall. Based on the observed relationships and downscaled...
Abstract (from American Meteorological Society): Projected changes in lake-effect snowfall by the mid- and late twenty-first century are explored for the Laurentian Great Lakes basin. Simulations from two state-of-the-art global climate models within phase 5 of the Coupled Model Intercomparison Project (CMIP5) are dynamically downscaled according to the representative concentration pathway 8.5 (RCP8.5). The downscaling is performed using the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 4 (RegCM4) with 25-km grid spacing, interactively coupled to a one-dimensional lake model. Both downscaled models produce atmospheric warming and increased cold-season precipitation....


    map background search result map search result map Dynamical Downscaling for the Midwest and Great Lakes Basin Dynamical Downscaling for the Midwest and Great Lakes Basin