Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > North Pacific Landscape Conservation Cooperative > NPLCC GIS Datasets > CPA Layers > ClimateChange ( Show direct descendants )

42 results (38ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__LC MAP - Landscape Conservation Management and Analysis Portal
___North Pacific Landscape Conservation Cooperative
____NPLCC GIS Datasets
_____CPA Layers
______ClimateChange
View Results as: JSON ATOM CSV
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows summer (Jun to Aug) mean temperature (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) mean temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean temperature of the warmest month (deg C * 10) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the B1 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean summer (May to Sep) precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean annual precipitation (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows winter (Dec to Feb) precipitation (mm) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here,...
thumbnail
This set of 4 rasters shows mean annual temperature (deg C * 10) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were...
thumbnail
This set of 4 rasters shows precipitation as snow (mm) for Western North America under the A2 Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published here, were converted...
thumbnail
This set of 4 rasters shows mean temperature of the coldest month (deg C * 10) for Western North America under the A1B Emissions Scenario from the Intergovernmental Panel on Climate Change (IPCC). One layer shows the historic period (1961 to 1990), and there are three layers of future climate projections representing the 2020s, the 2050s, and the 2080s. These future layers are ensemble averages across all 23 CMIP3 AOGCMs (Coupled Model Intercomparison Project 3 Atmosphere-Ocean General Circulation Models). All layers have a resolution of 1 km, and are designed to capture climate gradients, temperature inversions, and rain shadows in the mountainous landscape of western North America. These data, originally published...


map background search result map search result map Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Precipitation under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Annual Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the coldest month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Summer (May to Sep) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Precipitation as Snow under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Summer (Jun to Aug) Precipitation under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Precipitation under the A1B Emissions Scenario (Western North America, 23 AOGCM Ensemble) Mean Temperature of the Warmest Month under the B1 Emissions Scenario (Western North America, 23 AOGCM Ensemble) Winter (Dec to Feb) Mean Temperature under the A2 Emissions Scenario (Western North America, 23 AOGCM Ensemble)