Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northwest CASC > FY 2014 Projects > Projecting the Effects of Climate Change on Aspen in the Central and Northern Rocky Mountains ( Show direct descendants )

46 results (12ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Northwest CASC
____FY 2014 Projects
_____Projecting the Effects of Climate Change on Aspen in the Central and Northern Rocky Mountains
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Hourly hydrometeorological data was collected over the 30-year period from 1984-2014 in Upper Sheep Creek, within the Reynolds Creek Experimental Watershed, Idaho, USA. These data were used to calibrate the one-dimensional Simultaneous Heat and Water (SHAW) model. These data and the SHAW calibration have previously been described in multiple publications, particularly Chauvin et al 2011 and Flerchinger et al 2016. In the dataset presented here, climate scenarios have been constructed, applied to the historic record, simulated in the SHAW model, and hydrologic results have been analyzed. These data include the following: (1) uscData. These are the historical data described above, prepared for input into the SHAW...
Abstract (from http://www.hydrol-earth-syst-sci.net/21/1/2017/): The phase of precipitation when it reaches the ground is a first-order driver of hydrologic processes in a watershed. The presence of snow, rain, or mixed-phase precipitation affects the initial and boundary conditions that drive hydrological models. Despite their foundational importance to terrestrial hydrology, typical phase partitioning methods (PPMs) specify the phase based on near-surface air temperature only. Our review conveys the diversity of tools available for PPMs in hydrological modeling and the advancements needed to improve predictions in complex terrain with large spatiotemporal variations in precipitation phase. Initially, we review...
Abstract (from ScienceDirect): Altered climate and changing fire regimes are synergistically impacting forest communities globally, resulting in deviations from historical norms and creation of novel successional dynamics. These changes are particularly important when considering the stability of a keystone species such as quaking aspen (Populus tremuloides Michx.), which contributes critical ecosystem services across its broad North American range. As a relatively drought intolerant species, projected changes of altered precipitation timing, amount, and type (e.g. snow or rain) may influence aspen response to fire, especially in moisture-limited and winter precipitation-dominated portions of its range. Aspen is...
thumbnail
Field measurements, daily meteorological inputs, and previously validated iSnobal simulations were used to run and inform the biogeochemical models Biome-BGC and Biome-BGC MuSo at three aspen stands in the Reynolds Creek Experimental Watershed. iSnobal simulations of snow redistribution were used to modify measured precipitation values to account for the redistribution of snow. Biome-BGC simulations were run under historical conditions (1984-2015) assuming both a uniform and redistributed snow layer. Biome-BGC MuSo simulations were run under historical (1996-2015) and future climate scenarios (2046-2065) and account for the redistribution of snow. Biogeochemical simulation data sets include input files used to run...
Aspen forests are “biological hotspots” in the western United States that support numerous wildlife species. Aspen ecosystems are also economically and socially important, providing high quality forage for livestock and game species (e.g. elk), as well as drawing tourists and improving local economies. Aspen ecosystems are in decline across portions of the western U.S., which is thought to be partly due to drought, and recent research suggests that future climate projected for the western U.S. will be even less capable of supporting aspen. We used different research methods to investigate key controls on aspen growth and survivability in the northern Great Basin and central Rockies. Specifically, we projected the...


map background search result map search result map Field measurements, biogeochemical model input files, climate data, and simulation output for aspen sites in the Reynolds Creek Experimental Watershed, ID, USA (1984-2015). Hydrologic sensitivity to climate change and aspen mortality in Upper Sheep Creek, Reynolds Creek Experimental Watershed (21st century scenarios) Field measurements, biogeochemical model input files, climate data, and simulation output for aspen sites in the Reynolds Creek Experimental Watershed, ID, USA (1984-2015). Hydrologic sensitivity to climate change and aspen mortality in Upper Sheep Creek, Reynolds Creek Experimental Watershed (21st century scenarios)