Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > Great Northern Landscape Conservation Cooperative > GNLCC Supported Science Projects > Identification of Fire Refugia in Rocky Mountain Ecosystems of the U.S. and Canada: Development and Application of the Refugium Concept for Biodiversity Conservation over Large Spatial and Temporal Scales > Data > Fires > Sample_Fires > USA_Fires ( Show direct descendants )
116 results (77ms)
Location
Folder
ROOT _ScienceBase Catalog __LC MAP - Landscape Conservation Management and Analysis Portal ___Great Northern Landscape Conservation Cooperative ____GNLCC Supported Science Projects _____Identification of Fire Refugia in Rocky Mountain Ecosystems of the U.S. and Canada: Development and Application of the Refugium Concept for Biodiversity Conservation over Large Spatial and Temporal Scales ______Data _______Fires ________Sample_Fires _________USA_Fires Filters
Date Range
Extensions Types
Contacts Categories |
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
Solar radiation grids were produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This solar radiation grid was produced using the Area Solar Radiation tool in ArcGIS 10.1, using inputs of the associated 30m DEM.
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
This imagery was collected and produced for a set of large fires sampled from within the Great Northern Landscape Conservation Cooperative study area. This imagery and associated metrics was produced using Landsat 5 and 7. This set of imagery and remote sensing metrics have the following file structure: 1. Each sub-folder in the Fires LC Map folder represents an individual fire. 2. Within the zip folder there are 5 raster tiffs. i. XXX_post_refl.tif The at-sensor-reflectance of the postfire landsat scene, named with the PolyID unique identifier for the fire, stored in 8-bit ii. XXX_pre_refl.tif The at-sensor-reflectance of the prefire landsat scene, named with the PolyID unique identifier for the...
|
|