Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2014 Projects ( Show direct descendants )

110 results (30ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70% of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately across different spatio-temporal scales. The increasing availability of remotely sensed data has led to significant advances in the frequency and spatial resolution of ET estimates, derived from energy balance principles with variables such as temperature used to estimate surface latent heat flux. Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET independently of other water budget components can lead to inconsistency with other budget terms. Methods that rely on ground-based...
Categories: Publication; Types: Citation; Tags: Remote Sensing
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
Historical and projected climate data and water balance data under three GCMs (CNRM-CM5, CCSM4, and IPSL-CM5A-MR) from 1980 to 2099 was used to assess projected climate change impacts in North Central U.S. We obtained required data from MACA data (https://climate.northwestknowledge.net/MACA/). Historical time period ranges from 1980 to 2005, and projected time period ranges from 2071 to 2099. The climate data includes temperature and precipitation whereas water balance data includes Potential Evapotranspiration (PET) and Moisture Index (MI) estimated using Penman-Monteith and Thornthwaite methods defining as Penman PET, Penman MI, Thornthwaite PET and Thornthwaite MI. Both types of MI was estimated as a ratio of...
thumbnail
This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from 12 Coupled Model Intercomparison Project - Phase 5 (CMIP5) climate model simulations (6GCMs x 2RCPs) which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic, and 2011-2040, 2041-2070 and...
Grassland loss has been extensive worldwide, endangering the associated biodiversity and human well-being that are both dependent on these ecosystems. Ecologists have developed approaches to restore grassland communities and many have been successful, particularly where soils are rich, precipitation is abundant, and seeds of native plant species can be obtained. However, climate change adds a new filter needed in planning grassland restoration efforts. Potential responses of species to future climate conditions must also be considered in planning for long-term resilience. We demonstrate this methodology using a site-specific model and a maximum entropy approach to predict changes in habitat suitability for 33 grassland...
Categories: Publication; Types: Citation
Abstract (from http://www.islandpress.org/book/climate-change-in-wildlands): Scientists have been warning for years that human activity is heating up the planet and climate change is under way. In the past century, global temperatures have risen an average of 1.3 degrees Fahrenheit, a trend that is expected to only accelerate. But public sentiment has taken a long time to catch up, and we are only just beginning to acknowledge the serious effects this will have on all life on Earth. The federal government is crafting broad-scale strategies to protect wildland ecosystems from the worst effects of climate change. The challenge now is to get the latest science into the hands of resource managers entrusted with protecting...
Abstract (from http://www.sciencedirect.com/science/article/pii/S2212096317300153): In recent years, federal land management agencies in the United States have been tasked to consider climate change vulnerability and adaptation in their planning. Ecological vulnerability approaches have been the dominant framework, but these approaches have significant limitations for fully understanding vulnerability in complex social-ecological systems in and around multiple-use public lands. In this paper, we describe the context of United States federal public lands management with an emphasis on the Bureau of Land Management to highlight this unique decision-making context. We then assess the strengths and weaknesses of an...
Trees are bioindicators of global climate change and regional urbanization, but available monitoring tools are ineffective for fine-scale observation of many species. Using six accelerometers mounted on two urban ash trees (Fraxinus americana), we looked at high-frequency tree vibrations, or change in periodicity of tree sway as a proxy for mass changes, to infer seasonal patterns of flowering and foliage (phenophases). We compared accelerometer-estimated phenophases to those derived from digital repeat photography using Green Chromatic Coordinates (GCC) and visual observation of phenophases defined by the USA National Phenology Network (NPN). We also drew comparisons between two commercial accelerometers and assessed...
Categories: Publication; Types: Citation
Abstract (from http://www.esajournals.org/doi/abs/10.1890/13-0905.1): Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Abstract (from http://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-15-0276.1): Remotely sensed land skin temperature (LST) is increasingly being used to improve gridded interpolations of near-surface air temperature. The appeal of LST as a spatial predictor of air temperature rests in the fact that it is an observation available at spatial resolutions fine enough to capture topoclimatic and biophysical variations. However, it remains unclear if LST improves air temperature interpolations over what can already be obtained with simpler terrain-based predictor variables. Here, the relationship between LST and air temperature is evaluated across the conterminous United States (CONUS). It is found that there are significant...
The operational Simplified Surface Energy Balance (SSEBop) model has been utilized to generate gridded evapotranspiration data from Landsat images. These estimates are primarily driven by two sources of information: reference evapotranspiration and Landsat land surface temperature (LST) values. Hence, SSEBop is limited by the availability of Landsat data. Here, in this proof-of-concept paper, we utilize the Continuous Change Detection and Classification (CCDC) algorithm to generate synthetic Landsat data, which are then used as input for SSEBop to generate evapotranspiration estimates for six target areas in the continental United States, representing forests, shrublands, and irrigated agriculture. These synthetic...
Categories: Publication; Types: Citation
In this research, we characterized the changes in the Gravity Recovery and Climate Experiment (GRACE) monthly total water storage anomaly (TWSA) in 18 surface basins and 12 principal aquifers in the conterminous United States during 2003–2016. Regions with high variability in storage were identified. Ten basins and four aquifers showed significant changes in storage. Eight surface basins and eight aquifers were found to show decadal stability in storage. A pixel-based analysis of storage showed that the New England basin and North Atlantic Coastal Plain aquifer showed the largest area under positive storage change. By contrast, the Lower Colorado and California basins showed the largest area under negative change....
Categories: Publication; Types: Citation
The lack of consistent, accurate information on evapotranspiration (ET) and consumptive use of water by irrigated agriculture is one of the most important data gaps for water managers in the western United States (U.S.) and other arid agricultural regions globally. The ability to easily access information on ET is central to improving water budgets across the West, advancing the use of data-driven irrigation management strategies, and expanding incentive-driven conservation programs. Recent advances in remote sensing of ET have led to the development of multiple approaches for field-scale ET mapping that have been used for local and regional water resource management applications by U.S. state and federal agencies....
Categories: Publication; Types: Citation
thumbnail
In the North Central U.S., temperatures are rising and precipitation patterns are changing, with consequences ranging from more frequent and severe wildfires to prolonged drought to widespread forest pest outbreaks. As a result, land managers are becoming increasingly concerned about how climate change is affecting natural resources and the essential services they provide communities. The rates and ecological impacts of changing conditions vary across this diverse region, which stretches from the Great Plains to the High Rockies. The goal of this project was to understand how native grasslands, shrublands, and forests will respond to changing conditions. Researchers first modeled how these vegetation types have...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.


map background search result map search result map Foundational Science Area: Assessing Climate Change Impacts to Wildlife and Habitats in the North Central U.S. Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method from selective CMIP5 models Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Water balance across regional climate gradients:  A comparison of two potential evapotranspiration metrics (1980-2099). Land use change and fragmentation of Rocky Mountain Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Great Sand Dunes Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Grand River Greater Wildland Ecosystems (GWE) using LANDFIRE data Foundational Science Area: Assessing Climate Change Impacts to Wildlife and Habitats in the North Central U.S. Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method from selective CMIP5 models Water balance across regional climate gradients:  A comparison of two potential evapotranspiration metrics (1980-2099).