Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > North Central CASC > FY 2014 Projects ( Show direct descendants )

110 results (23ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
Most nations around the world set aside some lands from where people live and work for the benefit of nature. Wildland ecosystems are those lands occupied chiefly by native plants and animals, not intensively used as urban or residential areas, and not intensively managed for the production of domesticated plants or animals (Kalisz and Wood 1995). Public parks, forests, grasslands, seashores, and other wildland ecosystems are central to the global strategy for the conservation of nature. These areas are also vital to the well-being of people. They provide essential ecosystem services, such as provisioning of food and water, supporting pollination and nutrient cycling, regulating floods and other disturbances, and...
Categories: Publication; Types: Citation
This project supported the activities of the Climate Foundational Science Area (FSA) at the North Central Climate Science Adaptation Center (NC CASC). These activities included foundational research into drought processes relevant to the different climatic zones and ecosystems in the NC CASC region. We examined role of the atmospheric thirst for water from the land surface (aka, Evaporative Demand), how that may change during the 21st century and affect drought related risks in the future. We developed and did outreach with a drought index called the Evaporative Demand Drought Index (EDDI), that solely looks at the Evaporative Demand parameter, for its drought early warning potential, its ability to capture flash...
The NC CSC has collaborated with the USGS AmericaView program to deploy cameras that will record phenology throughout the region. Although, not all cameras were deployed throught AmericaView, they were deployed at the following sites: Ashland Bottoms, Kansas Bangtail Study Area in Bozeman, Montana Central Plains Experimental Range, Colorado Grand River Grasslands, Iowa Grand Teton National Park National Elk Refuge, Wyoming Nine Mile Prairie, University of Nebraska, Nebraska Oakville Prairie, North Dakota Poudre Learning Center, Colorado Sagebrush Steppe, Wyoming Earth Resources Observation and Science Center, South Dakota
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
Abstract (from http://www.sciencedirect.com/science/article/pii/S1574954115001466): Anticipating the ecological effects of climate change to inform natural resource climate adaptation planning represents one of the primary challenges of contemporary conservation science. Species distribution models have become a widely used tool to generate first-pass estimates of climate change impacts to species probabilities of occurrence. There are a number of technical challenges to constructing species distribution models that can be alleviated by the use of scientific workflow software. These challenges include data integration, visualization of modeled predictor–response relationships, and ensuring that models are reproducible...
This webinar was recorded as part of the Climate Change Science and Management Webinar Series (hosted in partnership by the USGS National Climate Change and Wildlife Science Center and FWS National Conservation Training Center). Webinar Summary: Accurate information on the atmospheric evaporative demand (i.e., thirst of the atmosphere) and the land-surface evaporative response (i.e., moisture supply on the land to meet the evaporative demand) is extremely important to assessing water stress on the land surface. In this webinar, the presenters will introduce real-time high resolution (1-10km) monitoring products of atmospheric evaporative demand and land-surface evaporative response models that are currently available...
thumbnail
This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the Canadian Centre for Climate Modeling and Analysis model, CanESM2, simulations (r1i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic,...
thumbnail
In the North Central U.S., drought is a dominant driver of ecological, economic, and social stress. Drought conditions have occurred in the region due to lower precipitation, extended periods of high temperatures and evaporative demand, or a combination of these factors. This project aimed to improve our understanding of drought in the North Central region and determine what future droughts might look like over the 21st century, as climate conditions change. Researchers evaluated, with the intent to improve, available and emerging data on climate conditions that influence drought (such as changes in temperature, precipitation, evaporative demand, snow and soil moisture), as well as datasets related to the surface...
thumbnail
Fragmentation extent of six ecosystem types after European Settlement was analyzed using LANDFIRE data. The ecosystem types includes: Grassland, Shrubland, Conifer, Riparian, Hardwood and Sparse ecosystems. The land use change and fragmentation extents have been analyzed by delineating nine Greater Wildland Ecosystems (GWEs) across NCCSC.
thumbnail
This dataset provides downscaled climate projections at 800m spatial resolution for nine ecologically-relevant climate variables for the north central US region between 35.5N-49N latitude and 88W-118W longitude from the National Center of Atmospheric Research (USA) model, CCSM4, simulations (r6i1p1) from two emissions scenarios (RCP 4.5 and 8.5), which are downscaled using the Multivariate Adaptive Constructed Analog (MACA) method. These projections are available as five different (approximately) 30-year climate normals between 1950 and 2099 as monthly values, except for Aridity Index which are annual values. The five periods for which these climate normals are provided are 1950-1979 and 1980-2005 in the historic,...
Abstract (from http://www.aimspress.com/article/10.3934/environsci.2015.2.400): State-and-transition simulation models (STSMs) are known for their ability to explore the combined effects of multiple disturbances, ecological dynamics, and management actions on vegetation. However, integrating the additional impacts of climate change into STSMs remains a challenge. We address this challenge by combining an STSM with species distribution modeling (SDM). SDMs estimate the probability of occurrence of a given species based on observed presence and absence locations as well as environmental and climatic covariates. Thus, in order to account for changes in habitat suitability due to climate change, we used SDM to generate...
Remotely sensed evapotranspiration (ET) data offer strong potential to support data-driven approaches for sustainable water management. However, practitioners require robust and rigorous accuracy assessments of such data. The OpenET system, which includes an ensemble of six remote sensing models, was developed to increase access to field-scale (30 m) ET data for the contiguous United States. Here we compare OpenET outputs against data from 152 in situ stations, primarily eddy covariance flux towers, deployed across the contiguous United States. Mean absolute error at cropland sites for the OpenET ensemble value is 15.8 mm per month (17% of mean observed ET), mean bias error is −5.3 mm per month (6%) and r2 is 0.9....
Categories: Publication; Types: Citation
A robust method for characterizing the biophysical environment of terrestrial vegetation uses the relationship between Actual Evapotranspiration (AET) and Climatic Water Deficit (CWD). These variables are usually estimated from a water balance model rather than measured directly and are often more representative of ecologically-significant changes than temperature or precipitation. We evaluate trends and spatial patterns in AET and CWD in the Continental United States (CONUS) during 1980–2019 using a gridded water balance model. The western US had linear regression slopes indicating increasing CWD and decreasing AET (drying), while the eastern US had generally opposite trends. When limits to plant performance characterized...
Categories: Publication; Types: Citation


map background search result map search result map Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S. CanESM2: Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method CCSM4: Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Badland Greater Wildland Ecosystems (GWE) using LANDFIRE data Land use change and fragmentation of Yellowstone Greater Wildland Ecosystems (GWE) using LANDFIRE data Foundational Science Area: Developing Climate Change Understanding and Resources for Adaptation in the North Central U.S. CanESM2: Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method CCSM4: Downscaled climate projections at 800m spatial resolution for the north central United States based on the Multivariate Adaptive Constructed Analog (MACA) method