Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > Arctic Landscape Conservation Cooperative > Projects ( Show direct descendants )

372 results (55ms)   

Location

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The ALCC has asked the U.S. Institute for Environmental Conflict Resolution (U.S. Institute) to assist them in engaging a third-party neutral facilitator who can work with the steering committee to identify key landscape scale resource management needs common to many of the ALCC partners. The overall goals of this project are twofold. One is to identify key future landscape scale resource management and science needs that are common to many of the ALCC partners, and in doing so, increase understanding of future landscape scale information needs among the ALCC steering committee members.
thumbnail
This pilot project has initiated a long-term integrated modeling project that aims todevelop a dynamically linked model framework focused on climate driven changes tovegetation, disturbance, hydrology, and permafrost, and their interactions and feedbacks.This pilot phase has developed a conceptual framework for linking current state-of-thesciencemodels of ecosystem processes in Alaska – ALFRESCO, TEM, GIPL-1 – and theprimary processes of vegetation, disturbance, hydrology, and permafrost that theysimulate. A framework that dynamically links these models has been defined and primaryinput datasets required by the models have been developed.
thumbnail
The Beaufort Sea coast in arctic Alaska and neighboring northern Canada has recently experienced extreme and accelerated climate change, including a dramatic reduction in summer sea ice (Gildor and Tziperman 2003, Holland et al. 2006). This absence of ice allows increased wind and wave energy to directly affect the coast, resulting in island and mainland flooding, coastal erosion, and further movement of barrier islands and beaches. The period each year in which the arctic is free of summer ice is increasing and is predicted to increase non-linearly in the future. This suggests a “tipping point” has been reached, producing internal feedback mechanisms that will further accelerate coastal change (Comiso et al., 2008).These...
thumbnail
The Terrestrial Environmental Observation Network (TEON) is intended to meet the need for a sustainable environmental observing network for northern Alaska. The TEON plan proposes collection of a time series of specific environmental variables in seven representative watersheds across northern Alaska. The Kuparuk River watershed is central to this plan both because of its location that bisects Alaska’s North Slope and its record of hydroclimatic data and research now surpassing 30-yrs. Nested catchments within and adjacent to this sentinel Arctic river system integrate climate and landscape responses from the Brooks Range foothills (Imnavait Creek and Upper Kuparuk River) to the Arctic Coastal Plain (Putuligayuk...
Categories: Data, Project; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ATMOSPHERE, ATMOSPHERE, Academics & scientific researchers, All tags...
thumbnail
Map of the Upper Koyukuk River Area and location of proposed observation sites (numbered circles). This large area drains the southern Brooks Range ecoregion and extends downstream into the Kobuk Ridges and Valleys outside of the Arctic LCC boundary. Compared to other sites in TEON, these rivers are larger basins and reflect higher relief landscapes. Inset shows the location of the seven TEON focal watersheds. Image by Arctic LCC staff.
Categories: Data; Types: Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: AIR TEMPERATURE, AIR TEMPERATURE, ATMOSPHERE, ATMOSPHERE, Academics & scientific researchers, All tags...
This polygon feature class represent areas surveyed for yellow-billed loons (Gavia adamsii) and is one component of the Yellow-billed Loon Geodatabase. This database is intended to be a qualitative “first look” at where yellow-billed loons have been recorded and where surveys have been conducted. This spatial dataset is intended for general planning and mapping purposes rather than for deriving density estimates. The geodatabase is comprised of two feature classes (observations and survey_poly) and two tables (incidental_attributes and reference_information)
The Bureau of Land Management- Arctic Field Office has a requirement for coordinating research andmonitoring projects related to the effectiveness of stipulations and surface resource impacts in theNational Petroleum Reserve - Alaska. Yellow-billed Loons are among the least common breeding birdsin the mainland United States and the U.S. breeding population is concentrated largely within theNational Petroleum Reserve – Alaska (NPR-A). Interest in developing the oil and gas reserves withinNPR-A has increased within the last 10 years, along with a need for better information with which toprotect loon populations. Fundamental to protection strategies is a good understanding of distributionand abundance.
thumbnail
Interactions and feedbacks between abundant surface waters and permafrost fundamentally shapelowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceedslake depth and mean annual bed temperatures (MABTs) remain below freezing. However, decliningMIT since the1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity towinter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data.Empirical model experiments suggest that shallow (1m depth) lakes have warmed substantially over the last30years (2.4°C), withMABT above freezing5 of the last 7years.This is incomparison to slower ratesofwarming...
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These rasters represent output from the Boreal ALFRESCO (Alaska Frame Based Ecosystem Code) model. Boreal ALFRESCO operates on an annual time step, in a landscape composed of 1 x 1 km pixels, a scale appropriate for interfacing with mesoscale climate and carbon models. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Coverage of this dataset includes much of the state of Alaska (but does exclude Southeastern AK, Kodiak Island, portions of the Alaska Peninsula, and the Aleutian Islands)....
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
Potential Evapotranspiration (PET): These data represent decadal mean totals of potential evapotranspiration estimates (mm). The file name specifies the decade the raster represents. For example, a file named pet_mean_mm_decadal_MPI_ECHAM5_A1B_annual_2000-2009.tif represents the decade spanning 2000-2009. The data were generated by using the Hamon equation and output from ECHAM5, a fifth generation general circulation model created by the Max Planck Institute for Meteorology in Hamburg Germany. Data are at 2km x 2km resolution, and all data are stored in geotiffs. Calculations were performed using R 2.12.1 and 2.12.2 for Mac OS Leopard, and data were formatted into geotiffs using the raster and rgdal packages. Users...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters averaged across a decade. The file name specifies the decade the raster represents. For example, a file named ALT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated maximum depth (in meters) of thaw penetration (for areas with permafrost) or frost penetration (for areas without permafrost). If the value of the cell is positive, the area is underlain by permafrost and the cell value specifies the depth of the seasonally thawing layer above permafrost. If the value of the cell is negative, the ground is only seasonally...
thumbnail
The Bureau of Ocean Energy Management (BOEM) is supporting a field effort in support of a ShoreZone mapping project along the Chukchi and Beaufort coasts. Funds from the LCC will allow for the inclusion of three additional ShoreStations. Researchers will conduct ground surveys to get detailed physical and biological measurements throughout the various and often unique Chukchi and Beaufort coastal habitats. Sediment samples will be archived from each shore station for hydrocarbon analyses in the event of a local or regional oil spill. The Arctic ShoreZone Shore Stations will be added to the statewide database and made available online to the public NOAA website.
thumbnail
Hydrologic data for the Alaska Arctic are sparse, and fewer still are long-term (> 10 year) datasets. This lack of baseline information hinders our ability to assess long-term alterations in streamflow due to changing climate. The Arctic LCC is provided stop-gap funding to continue this long time series hydrological data sets in the Kuparuk and Putuligayuk watersheds.
thumbnail
These raster datasets represent historical stand age. The last four digits of the file name specifies the year represented by the raster. For example a file named Age_years_historical_1990.tif represents the year 1990. Cell values represent the age of vegetation in years since last fire, with zero (0) indicating burned area in that year. Files from years 1860-2006 use a variety of historical datasets for Boreal ALFRESCO model spin up and calibration to most closely match historical wildfire dynamics.
thumbnail
These raster datasets are output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in Celsius, averaged across a decade, at the base of active layer or at the base of the seasonally frozen soil column. These data were generated by driving the GIPL model with a composite of five GCM model outputs for the A1B emissions scenario. The file name specifies the decade the raster represents. For example, a file named MAGT_1980_1989.tif represents the decade spanning 1980-1989. Cell values represent simulated mean annual ground temperature (degree C) at the base of the active layer (for areas with permafrost) or at the base of the soil column that is...


map background search result map search result map Streamflow monitoring on the Canning and Tamayariak rivers. Streamflow Monitoring on Upper Kuparuk and Putuligayuk Rivers (2010) TEON: Terrestrial Environmental Observation Network A needs assessment and work plan development for coastal change outreach on the Beaufort Sea coast, Alaska Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate ShoreZone Program on the North Slope of Alaska Simulated Mean Annual Ground Temperature Integrated Ecosystem Model Reports Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2070-2079 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Upper Koyukuk River Watershed map Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Historical Stand Age 1980-1989 Historical Stand Age 1940-1949 Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate Streamflow monitoring on the Canning and Tamayariak rivers. Streamflow Monitoring on Upper Kuparuk and Putuligayuk Rivers (2010) ShoreZone Program on the North Slope of Alaska A needs assessment and work plan development for coastal change outreach on the Beaufort Sea coast, Alaska TEON: Terrestrial Environmental Observation Network Upper Koyukuk River Watershed map Simulated Mean Annual Ground Temperature Integrated Ecosystem Model Reports Stand Age Projections 2060-2069 Active Layer Thickness 2080-2089 Active Layer Thickness 2070-2079 Active Layer Thickness 2000-2009 Potential Evapotranspiration 2010-2019: ECHAM5 - A1B Scenario Potential Evapotranspiration 2050-2059: ECHAM5 - A1B Scenario Historical Stand Age 1980-1989 Historical Stand Age 1940-1949