Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > Great Basin Landscape Conservation Cooperative > Great Basin LCC Supported Research > Research and Publications Authored and Supported by GBLCC Staff > Report: Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach. ( Show direct descendants )

14 results (11ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__LC MAP - Landscape Conservation Management and Analysis Portal
___Great Basin Landscape Conservation Cooperative
____Great Basin LCC Supported Research
_____Research and Publications Authored and Supported by GBLCC Staff
______Report: Using resistance and resilience concepts to reduce impacts of invasive annual grasses and altered fire regimes on the sagebrush ecosystem and greater sage-grouse: A strategic multi-scale approach.
View Results as: JSON ATOM CSV
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
thumbnail
Values represent percent of surrounding landscape (5K) are dominated by sagebrush cover. Reclassified LANDFIRE 2013 Existing Vegetation Type by selecting the ecological systems containing sagebrush (Codes: 2080, 2125, 2126, 2220, 2064, 2072, 2079, 2124) to create a binary raster dataset with 1 for the sagebrush land cover types and zero for all others.To incorporate sagebrush lost to fire in fires since the Landsat was flown in 2010 that Landfire was derived from, I used fire perimeters from 2011,2012, & 2013 to reclassify pixels designated as having sagebrush as 0 (not having sagebrush), which assumes a homogenous burn (in reality there may be patches of sagebrush left within a burn perimeter). I then ran focalsum...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
Categories: Data, Publication; Types: Citation, Map Service, OGC WFS Layer, OGC WMS Layer, OGC WMS Service; Tags: California, Colorado, EARTH SCIENCE > LAND SURFACE > LANDSCAPE, Greater sage-grouse, Greater sage-grouse, All tags...
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014, 2016). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...
thumbnail
Emerging applications of ecosystem resilience and resistance concepts in sagebrush ecosystems allow managers to better predict and mitigate impacts of wildfire and invasive annual grasses. Soil temperature and moisture strongly influence the kind and amount of vegetation, and consequently, are closely tied to sagebrush ecosystem resilience and resistance (Chambers et al. 2014). Soil taxonomic temperature and moisture regimes can be used as indicators of resilience and resistance at landscape scales to depict environmental gradients in sagebrush ecosystems that range from cold/cool-moist sites to warm-dry sites. We aggregated soil survey spatial and tabular data to facilitate broad-scale analyses of resilience and...


    map background search result map search result map Data Journal Article: Soil Temperature and Moisture Regimes across Sage-Grouse Range Detailed SSURGO and STATSGO Soil Temperature  Moisture Data Sagebrush Distribution and % Landscape Cover Dataset: Sagebrush MW5k Percent Combined SSURGO and STATSGO2 Soil Moisture and Temperature Regime Data Dataset: Index of Relative Ecosystem Resilience and Resistance across Sage-Grouse Management Zones Soil Temperature and Moisture Regime Data across Sage-Grouse Management Zones Resilience and Resistance Classes for Sage-Grouse Management Zones Journal Article: Soil Temperature and Moisture Regimes across Sage-Grouse Range Detailed SSURGO and STATSGO Soil Temperature  Moisture Data Combined SSURGO and STATSGO2 Soil Moisture and Temperature Regime Data Soil Temperature and Moisture Regime Data across Sage-Grouse Management Zones Resilience and Resistance Classes for Sage-Grouse Management Zones Dataset: Index of Relative Ecosystem Resilience and Resistance across Sage-Grouse Management Zones Dataset: Sagebrush MW5k Percent