Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) > Upper Midwest Environmental Sciences Center Data > Upper Mississippi River System > Benthic/Substrate Mapping & Analysis ( Show direct descendants )

59 results (16ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
___Upper Midwest Environmental Sciences Center Data
____Upper Mississippi River System
_____Benthic/Substrate Mapping & Analysis
View Results as: JSON ATOM CSV
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic habitats of the Illinois River will be interpreted to support Asian carp research, monitoring and control. The entire study plan will consist of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), will have priority areas and backwaters collected and analyzed first.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support invasive carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
Transects in backwaters of Navigation Pools 4 and 8 of the Upper Mississippi River (UMR) were established in 1997 to measure sedimentation rates. Annual surveys were conducted from 1997-2002 and then some transects surveyed again in 2017-18. Changes and patterns observed were reported on in 2003 for the 1997-2002 data, and a report summarizing changes and patterns from 1997-2017 will be reported on at this time. Several variables are recorded each survey year and placed into an Excel spreadsheet. The spreadsheets are read with a SAS program to generate a SAS dataset used in SAS programs to determine rates, depth loss, and associations between depth and change through regression.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the West Pit of Hanson Pits (where accessible) of the Marseilles reach June 25-26, 2018.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring, and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange, and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange, and Alton), had areas prioritized for data collection and analysis.
Sedimentation occurs when eroded material that is being transported by water settles out of the water column onto a surface, as the water flow slows.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support invasive carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.


map background search result map search result map Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River Side Scan Images Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Backwater Sedimentation in Navigation Pools 4 and 8 of the Upper Mississippi River data Sedimentation Data Illinois River, Peoria Priority Areas, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Clark Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Chillicothe Slough, Multibeam Bathymetry, September 2019 Illinois River Habitat Mapping - Dresden Substrate Characterization, 2020 Illinois River Habitat Mapping - Marseilles Pool Substrate Characterization, 2020 Illinois River, Marseilles, Bathymetric Hillshade, 2017-2018 Illinois River, Marseilles, Bathymetric Ruggedness Index, 2017-2018 Illinois River, Marseilles, Bathymetric Slope, 2017-2018 Illinois River Habitat Mapping - Starved Rock Substrate Characterization, 2020 Illinois River, Starved Rock, Bathymetric Hillshade, 2017-2018 Illinois River, Brandon, Bathymetric Hillshade, May 2018 Illinois River, Brandon, Bathymetric Terrain Ruggedness Index, May 2018 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Clark Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Brandon, Bathymetric Hillshade, May 2018 Illinois River, Brandon, Bathymetric Terrain Ruggedness Index, May 2018 Illinois River Habitat Mapping - Starved Rock Substrate Characterization, 2020 Illinois River, Starved Rock, Bathymetric Hillshade, 2017-2018 Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River Habitat Mapping - Dresden Substrate Characterization, 2020 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Illinois River Habitat Mapping - Marseilles Pool Substrate Characterization, 2020 Illinois River, Marseilles, Bathymetric Hillshade, 2017-2018 Illinois River, Marseilles, Bathymetric Ruggedness Index, 2017-2018 Illinois River, Marseilles, Bathymetric Slope, 2017-2018 Illinois River Side Scan Images Illinois River, Peoria Priority Areas, Multibeam Sidescan Image Mosaic, September 2019 Backwater Sedimentation in Navigation Pools 4 and 8 of the Upper Mississippi River data