Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > USGS Pacific Islands Water Science Center > Soil and Vegetation ( Show direct descendants )

12 results (78ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__USGS Pacific Islands Water Science Center
___Soil and Vegetation
View Results as: JSON ATOM CSV
thumbnail
This shapefile summarizes the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Oʻahu, Hawaiʻi for a set of rainfall and land-cover conditions represented in 10 water-budget scenarios. The 10 scenarios include (1) historical non-drought rainfall and 2020 land cover, (2) historical drought rainfall and 2020 land cover (3) future non-drought rainfall and 2020 land cover, (4) future drought rainfall and 2020 land cover, (5) historical drought rainfall and Conversion 1 land cover (6) future non-drought rainfall and Conversion 1 land cover, (7) a future drought rainfall and Conversion 1 land cover, (8) historical drought rainfall and Conversion 2 land cover, (9) future non-drought...
thumbnail
These shapefiles represent the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi for a set of water-budget scenarios that characterize unique combinations of rainfall and land-cover conditions. Four water-budget scenarios were developed to quantify the effects of drought on soil moisture, evapotranspiration, and climatic water deficit for each island as follows: (1) a reference condition, the Non-Drought scenario, consisting of rainfall conditions during 1990–97 and 2003–06 and 2020 land cover, (2) rainfall conditions representative of the driest periods during 1920–2012 and 2020 land cover, (3) rainfall conditions...
thumbnail
This shapefile represents the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for the Island of Hawaiʻi, Hawaiʻi for a set of rainfall and land-cover conditions represented in 10 water-budget scenarios. The 10 scenarios include (1) historical non-drought rainfall and 2020 land cover, (2) historical drought rainfall and 2020 land cover (3) future non-drought rainfall and 2020 land cover, (4) future drought rainfall and 2020 land cover, (5) historical drought rainfall and Conversion 1 land cover (6) future non-drought rainfall and Conversion 1 land cover, (7) a future drought rainfall and Conversion 1 land cover, (8) historical drought rainfall and Conversion 2 land cover,...
thumbnail
The U.S. Geological Survey and the University of Hawaii at Manoa, in cooperation with the County of Maui Department of Water Supply and the State of Hawaii Commission on Water Resource Management, initiated a field data-collection program to provide information for evaluating how infiltration rates and soil hydrophobicity are dependent on plant species type within forested areas on the island of Maui. The field data collection is part of a study to quantify the impacts of high-priority non-native and dominant native plant species on freshwater availability throughout the State of Hawaii (https://archive.usgs.gov/archive/sites/hi.water.usgs.gov/studies/maui_eco/index.html). The overall objective of the study is to...
thumbnail
This shapefile represents the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Maui, Hawaiʻi for a set of rainfall and land-cover conditions represented in 10 water-budget scenarios. The 10 scenarios include (1) historical non-drought rainfall and 2020 land cover, (2) historical drought rainfall and 2020 land cover (3) future non-drought rainfall and 2020 land cover, (4) future drought rainfall and 2020 land cover, (5) historical drought rainfall and Conversion 1 land cover (6) future non-drought rainfall and Conversion 1 land cover, (7) a future drought rainfall and Conversion 1 land cover, (8) historical drought rainfall and Conversion 2 land cover, (9) future non-drought...
thumbnail
This shapefile represents the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Molokaʻi, Hawaiʻi for four water-budget scenarios. The four scenarios include (1) historical non-drought rainfall and 2020 land cover, (2) historical drought rainfall and 2020 land cover, (3) future non-drought rainfall and 2020 land cover, and (4) future drought rainfall and 2020 land cover. Historical non-drought rainfall is monthly rainfall during 1990–97 and 2003–06 from Frazier and others (2016). Historical drought rainfall is monthly rainfall during 1998–2002 and 2007–12 from Frazier and others (2016). Future non-drought rainfall is monthly rainfall during 1990–97 and 2003–06 from Frazier...
thumbnail
The University of Hawaiʻi at Mānoa and the U.S. Geological Survey, in cooperation with the County of Maui Department of Water Supply and the State of Hawaiʻi Commission on Water Resource Management, initiated a field data-collection program to provide information for evaluating how rates of water vapor and carbon dioxide exchange are dependent on plant species type within forested areas on the island of Maui. The field data collection is part of a study to quantify the impacts of high-priority non-native and dominant native plant species on freshwater availability throughout the State of Hawaiʻi (https://archive.usgs.gov/archive/sites/hi.water.usgs.gov/studies/maui_eco/index.html). The overall objective of the study...
thumbnail
The U.S. Geological Survey Pacific Islands Water Science Center and the University of Hawaii at Manoa Department of Geography, in cooperation with the U.S. Department of Interior Pacific Islands Climate Adaptation Science Center initiated a field data-collection program as part of a study to quantify the impacts of drought on water resources and the importance of cloud-water interception in mitigating the impacts of drought (see Related External Resources link below). The goal of the data-collection program is to provide information for evaluating the role that cloud-water interception in Hawaii’s rain forests has in providing moisture for plants, reducing wildfire risk within the fog zone, and contributing to groundwater...
thumbnail
This dataset describes land cover and vegetation for the island of Maui, Hawaii, 2017, hereinafter the 2017 land-cover map. The 2017 land-cover map is a modified version of the 2010 land-cover map included in the geospatial dataset titled "Mean annual water-budget components for the Island of Maui, Hawaii, for average climate conditions, 1978-2007 rainfall and 2010 land cover (version 2.0)" by Johnson (2017). The 2010 land-cover map was generated by intersecting (merging) multiple spatial datasets that characterize the spatial distribution of rainfall, cloud-water (or fog) interception, irrigation, reference evapotranspiration, direct runoff, soil type, and land cover. Land-cover designations in the 2010 land-cover...
thumbnail
This shapefile represents the frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Hawaiʻi for four water-budget scenarios. The four scenarios include (1) historical non-drought rainfall and 2020 land cover, (2) historical drought rainfall and 2020 land cover, (3) future non-drought rainfall and 2020 land cover, and (4) future drought rainfall and 2020 land cover. Historical non-drought rainfall is monthly rainfall during 1990–97 and 2003–06 from Frazier and others (2016). Historical drought rainfall is monthly rainfall during 1998–2002 and 2007–12 from Frazier and others (2016). Future non-drought rainfall is monthly rainfall during 1990–97 and 2003–06 from Frazier...


    map background search result map search result map Land-Cover Map for the Island of Maui, Hawaii, 2017 Soil Characteristics Summary of soil field-saturated hydraulic conductivity, hydrophobicity, preferential-flow, and particle-size measurements collected at four study sites on the island of Maui, Hawaii, September 2017–August 2018 Summary of soil field-saturated hydraulic conductivity, hydrophobicity, and preferential-flow measurements and soil laboratory-testing results collected at three sites on the islands of Maui and Hawaii, Hawaii, July 2016–January 2018 Leaf-level gas exchange and leaf-area index measurements collected at four study sites on the island of Maui, Hawai‘i, September 2017 – August 2018 Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of rainfall and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi for historical and future drought conditions, and 2020 land cover Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Oʻahu for a set of rainfall and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Molokaʻi for historical and future drought conditions, and 2020 land cover Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Maui for a set of rainfall and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for the Island of Hawaiʻi for a set of rainfall and land-cover conditions Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Molokaʻi for historical and future drought conditions, and 2020 land cover Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi for historical and future drought conditions, and 2020 land cover Soil Characteristics Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Oʻahu for a set of rainfall and land-cover conditions Summary of soil field-saturated hydraulic conductivity, hydrophobicity, preferential-flow, and particle-size measurements collected at four study sites on the island of Maui, Hawaii, September 2017–August 2018 Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Maui for a set of rainfall and land-cover conditions Land-Cover Map for the Island of Maui, Hawaii, 2017 Leaf-level gas exchange and leaf-area index measurements collected at four study sites on the island of Maui, Hawai‘i, September 2017 – August 2018 Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for the Island of Hawaiʻi for a set of rainfall and land-cover conditions Summary of soil field-saturated hydraulic conductivity, hydrophobicity, and preferential-flow measurements and soil laboratory-testing results collected at three sites on the islands of Maui and Hawaii, Hawaii, July 2016–January 2018 Frequency characteristics of soil moisture, evapotranspiration, and climatic water deficit for Kauaʻi, Oʻahu, Molokaʻi, Maui, and the Island of Hawaiʻi, for a set of rainfall and land-cover conditions