Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) > Upper Midwest Environmental Sciences Center Data > Upper Mississippi River System > Benthic/Substrate Mapping & Analysis > Illinois River Side Scan Images ( Show direct descendants )

15 results (11ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
___Upper Midwest Environmental Sciences Center Data
____Upper Mississippi River System
_____Benthic/Substrate Mapping & Analysis
______Illinois River Side Scan Images
View Results as: JSON ATOM CSV
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Dresden reach June 4 – 28, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the West Pit of Hanson Pits (where accessible) of the Marseilles reach June 25-26, 2018.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main and side channels (where accessible) of the Marseilles reach June 26 – August 23, 2017, and May 22, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support invasive carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the main and side channels (where accessible) of the Starved Rock reach August 24 – September 13, 2017, and May 23, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the Easst Pit of Hanson Pits (where accessible) of the Marseilles reach June 27, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic characteristics of macro habitats in the Illinois River. Multibeam echosounders collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the riverbed. The acoustic data were collected from the East Pit of the Hanson Pits (where accessible) of the Marseilles reach June 27, 2018, and August 25, 2020.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.
thumbnail
Remote sensing technologies, such as high-resolution sonar, can be used to collect more detailed information about the benthic and water column characteristics of macro habitats in the Illinois River. Multibeam echosounders (MBES) collect multibeam and sidescan simultaneously, providing high-resolution images of the riverbed. Sidescan images, in raster format, show the recorded intensity of acoustic signal returns from the river bed. The acoustic data were collected from the main channel (where accessible) of the Brandon reach May 24, 2018.
thumbnail
Using high-resolution sonar technologies with geographic information systems (GIS) and object based image analysis, benthic characteristics of the Illinois River have been interpreted to support Asian carp research, monitoring and control. The study plan consisted of data collection and analysis of the Brandon, Dresden, Starved Rock, Marseilles, Peoria, La Grange and Alton reaches of the Illinois River. Reaches with larger aquatic areas (Peoria, La Grange and Alton), had areas prioritized for data collection and analysis.


    map background search result map search result map Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Hanson Pits,East Pit, Sidescan Image Mosaic, 2018 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Illinois River, Brandon, Sidescan Image Mosaic, May 2018 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 Illinois River, Hanson Pits, East Pit, Sidescan Image Mosaic, 2018-2020 Illinois River, Peoria Priority Areas, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Chillicothe Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Clark Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Hennepin Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Henry Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Plum Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-South, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-South, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Upper Twin Islands-North, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Hennepin Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Plum Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Chillicothe Slough, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Peoria Side Channel - Henry Island, Multibeam Sidescan Image Mosaic, September 2019 Illinois River, Hanson Pits,East Pit, Sidescan Image Mosaic, 2018 Illinois River, Hanson Pits, East Pit, Sidescan Image Mosaic, 2018-2020 Illinois River, Hanson Pits,West Pit, Sidescan Image Mosaic, 2018 Illinois River, Brandon, Sidescan Image Mosaic, May 2018 Illinois River, Starved Rock, Sidescan Image Mosaic, 2017-2018 Illinois River, Dresden, Sidescan Image Mosaic June 2018 Illinois River, Marseilles, Sidescan Image Mosaic, 2017-2018 Illinois River, Peoria Priority Areas, Multibeam Sidescan Image Mosaic, September 2019