Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) > Upper Midwest Environmental Sciences Center Data > Upper Mississippi River System ( Show direct descendants )
949 results (69ms)
Location
Folder
ROOT _ScienceBase Catalog __Upper Midwest Environmental Sciences Center (UMESC) ___Upper Midwest Environmental Sciences Center Data ____Upper Mississippi River System Filters
Date Range
Extensions Types
Contacts
Categories Tag Types Tag Schemes |
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present the results of a geospatial surface-water connectivity model in support of ecological investigations fully described in the USGS Open File Report entitled “Indicators of Ecosystem Structure and Function for the Upper Mississippi River System” (De Jager et al., in review). Briefly, we identified likely instances of floodplain submergence by comparing a daily time series of gage-derived water surface elevations to topo-bathymetric data modified to account for slopes and hydrologic routing. The resulting raster attribute table contains columns...
Categories: Data;
Types: Downloadable,
GeoTIFF,
Map Service,
Raster;
Tags: Hydrogeomorphology,
Illinois River,
Upper Mississippi River,
flood regime,
floodplain,
A geodatabase was developed to compile Curve Fit (Version 10.1; De Jager and Fox, 2013) regression tool standard error outputs for wild celery (Vallisneria americana), wild rice (Zizania aquatica) and arrowhead (one raster for the sum of Sagittaria rigida and Sagittaria latifolia) for pools 4, 8, and 13 on the Upper Mississippi River system from 1998-2019 using mapped abundance raster datasets. Relative abundance, for submersed species and filamentous algae, represents the sum of rake scores across the six subsites divided by the maximum possible rake score (30) at each site, multiplied by 100 (0-100%). Percent cover, for emersed, rooted floating-leaved and free-floating lifeforms, represents the maximum % cover...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
Floodplain inundation is believed to be the dominant physical driver of an array of ecosystem patterns and processes in the Upper Mississippi River System (UMRS). Here, we present a time series of daily surface water inundation depths (in feet) for floodplain surfaces in the UMRS. The time series data are for the months of April through September of every year since 1940. These months were chosen because it approximates the period during which most biophysical processes such as vegetation metabolism and biogeochemical cycling are likely to be strongest across the longitudinal gradient of the UMRS. Data were derived from a geospatial model of surface water inundation developed for the UMRS and described in Van Appledorn...
The dataset accompanies the scientific article, "Experimental conservation translocations of an aquatic invertebrate (Gammarus lacustris) within prairie and forest-transitional wetlands". In this study, we conducted a before-after/control-impact experiment to test the efficacy of conservation translocation for re-establishing abundant populations of the freshwater amphipod Gammarus lacustris in years 2017-2020. Each site (n=19) comprised at least 2 wetland basins, generally with one basin receiving translocated G. lacustris from a local donor and the other serving as a nearby control basin. The dataset contains information about the sites and the number of amphipods and density of amphipods detected at each basin.
Categories: Data;
Tags: Aquatic Biology,
Ecology,
Gammarus lacustris,
Minnesota, USA,
North America,
|
|