Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Upper Midwest Environmental Sciences Center (UMESC) > Upper Midwest Environmental Sciences Center Data > Laurentian Great Lakes ( Show direct descendants )

197 results (18ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
___Upper Midwest Environmental Sciences Center Data
____Laurentian Great Lakes
View Results as: JSON ATOM CSV
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 10-meter (m; 32.8084 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is a digital elevation model (DEM) of the beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, Minnesota. The DEM has a 5-meter (m; 16.404 feet) cell size and was created from a LAS dataset of terrestrial light detection and ranging (lidar) data representing the beach topography, and multibeam sonar data representing the bathymetry. The survey area extends approximately 0.85 kilometers (0.5 miles) offshore, for an approximately 1.87 square kilometer surveyed area. Lidar data were collected September 23, 2020 using a boat mounted Velodyne unit. Multibeam sonar data were collected September 22-23, 2020 using a Norbit integrated wide band multibeam system compact (iWBMSc)...
thumbnail
This dataset is the survey area footprint for the beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, Minnesota. The survey footprint represents a LAS dataset of terrestrial light detection and ranging (lidar) of beach topography and multibeam sonar bathymetry to approximately 1 kilometer (0.62 miles) offshore, for an approximately 2.27 square kilometer surveyed area. The surveys were completed July 20 - July 23, 2020.
thumbnail
Twenty-eight sites that consisted of either predominantly agricultural land in the watershed, predominantly agricultural land in the watershed with natural land cover in the riparian zone, or predominantly natural land cover in the watershed were sampled three times during the growing season.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
Tree swallow (Tachycineta bicolor) eggs and nestlings were collected from 16 sites across the Great Lakes to quantify normal annual variation in total polychlorinated biphenyl (PCBs) exposure and to validate the sample size choice in earlier work. A sample size of 5 eggs or 5 nestlings per site was adequate to quantify exposure to PCBs in tree swallows given the current exposure levels and variation. There was no difference in PCB exposure in 2 randomly selected sets of 5 eggs collected in the same year, but analyzed in different years. Additionally, there was only modest annual variation in exposure, with between 69% (nestlings) and 73% (eggs) of sites having no differences between years. There was a tendency,...
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
The USGS developed the second in a series of informative spatial distribution datasets of submersed aquatic vegetation (SAV) in the eastern basin of Lake Erie. The second dataset was developed by object-based image analysis of high-resolution imagery (US waters < 6 meters deep) collected during peak biomass in 2018 to allow assessments of changes in SAV distribution. Assessing SAV abundance may contribute to inform the long-term impacts of Grass Carp, Common Carp, eutrophication, wind fetch and sedimentation on vegetation communities throughout Lake Erie and the impact these stressors may have on other organisms in the ecosystem. These data may also help inform the deployment of toxic bait deployments targeting...
thumbnail
High-resolution digital aerial imagery was collected on August 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie as well as shallow areas along the shoreline of the eastern portion.
thumbnail
The datasets listed on this page need to have copies of the images and their metadata files stored in .zip files for downloading, as the list of individual files is so long users may not download the metadata at the same time they download images. Do not make public until the image files are replaced with .zip files (which contain both the images and metadata). High-resolution digital aerial imagery was collected on August 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared...
thumbnail
High-resolution digital aerial imagery was collected on August 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie as well as shallow areas along the shoreline of the eastern portion.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
thumbnail
Between 1900 and 1932, a copper (Cu) mine operated near Gay, Michigan, along the shore of Lake Superior, discharged approximately 22.8 million metric tons of waste material known as ‘stamp sands’ (SS) to a nearby beach. This pile of SS has migrated via wind and rain along the beaches in northern Grand Traverse Bay and into Buffalo Reef, an important spawning area for Lake Trout and Lake Whitefish. During their first summer, these newly spawned fish consume benthic invertebrates and zooplankton in nearby beach habitats. SS contain elevated concentrations of metals (especially Cu) that are toxic to many invertebrate taxa, and studies have observed very few benthic taxa in areas with very high SS. Here, we sampled...
thumbnail
This dataset is a LAS (industry-standard binary format for storing lidar point clouds) dataset containing light detection and ranging (lidar) data and sonar data representing the beach and near-shore topography of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. Average point spacing of the LAS files in the dataset are as follows: lidar, 0.094 meters (m); multibeam sonar, 0.501 m; single-beam sonar, 1.876 m. The LAS dataset was used to create digital elevation models (DEMs) of 10 m (32.8084 feet) and 1 m (3.28084 feet) resolution, of the approximate 1.75 square kilometer surveyed area. Lidar data were collected August 22, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar...
thumbnail
This dataset is comprised of three files containing northing, easting, and elevation ("XYZ") information for light detection and ranging (lidar) data representing the beach topography and sonar data representing near-shore topography of Lake Superior at Minnesota Point, near the Duluth entry, Duluth, Minnesota. The point data is the same as that in LAS files that were used to create the digital elevation models (DEMs) of the approximate 2.15 square kilometer surveyed area. Lidar data were collected September 07, 2022 using a boat mounted Velodyne VLP-16 unit and methodology similar to that described by Huizinga and Wagner (2019). Multibeam sonar data were collected September 06-07, 2022 using a Norbit integrated...
The Upper Midwest Environmental Sciences Center (UMESC) in La Crosse, Wisconsin is studying the distribution and foraging patterns of sentinel fish-eating waterbirds through aerial surveys, and by tracking migration movements coupled with foraging depth profiles of common loons equipped with archival geo-locator tags and satellite transmitters. The results of this work are expected to elucidate where piscivorous waterbirds are likely to be exposed to forage fish carrying type-E botulinum toxin, which in turn will inform site-specific efforts to assess the degree to which physical and ecological factors contribute to the occurrence of botulinum toxin in aquatic food webs. Additional resources associated with UMESC's...


map background search result map search result map 2018 Western Lake Erie 4-Band Mosaics - 20180823_StonyPointS 2018 Western Lake Erie 4-Band Mosaics - 20180824_Castalia 2018 Western Lake Erie 4-Band Mosaics - 20180824_Gypsum 2018 Western Lake Erie 4-Band Mosaics - 20180824_StonyPointSE 2018 Eastern Lake Erie 4-Band Mosaics - 20180824_shoreline_6a 2018 Western Lake Erie 4-Band Mosaics - 20180823_RockwoodE GLRI: Avian Botulism in Distressed Great Lakes Environments Great Lakes Restoration Initiative: Fox River Basin 2018 Data Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Eastern Basin, 2018 2018 Eastern Lake Erie Shoreline 4-Band Mosaics and Orthophotos 2018 Eastern Lake Erie Shoreline 4-Band Orthophotos - Section 2A Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 (ver. 2.0, September 2024) Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 (ver. 2.0, September 2024) Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 (ver. 2.0, September 2024) XYZ dataset of lidar, single-beam, and multibeam sonar data collected at Lake Superior at Minnesota Point near the Superior Entry, Duluth, MN, September 2022 (ver. 2.0, September 2024) Measurement of benthic invertebrates, zooplankton, stamp sands and metals from four beaches near Keweenaw Bay, Lake Superior in 2021 LAS dataset of lidar, single-beam and multibeam sonar data collected at Lake Superior at Minnesota Point near the Duluth Entry, Duluth, MN, August 2022 (ver. 2.0, September 2024) Duluth Entry: 10-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 (ver. 2.0, September 2024) Duluth Entry: 5-meter Digital elevation model (DEM) of beach topography and near-shore bathymetry of Lake Superior at the Duluth Entry, Duluth, MN, September 2020 (ver. 2.0, September 2024) XYZ dataset of lidar, single-beam, and multibeam sonar data collected at Lake Superior at Minnesota Point near the Superior Entry, Duluth, MN, September 2022 (ver. 2.0, September 2024) Minnesota Point: Survey area of beach topography and near-shore bathymetry of Lake Superior at Minnesota Point, Duluth, MN, July 2020 2018 Western Lake Erie 4-Band Mosaics - 20180824_StonyPointSE 2018 Western Lake Erie 4-Band Mosaics - 20180823_RockwoodE 2018 Western Lake Erie 4-Band Mosaics - 20180824_Castalia 2018 Western Lake Erie 4-Band Mosaics - 20180824_Gypsum 2018 Western Lake Erie 4-Band Mosaics - 20180823_StonyPointS 2018 Eastern Lake Erie 4-Band Mosaics - 20180824_shoreline_6a Orthophotos: oriXU-RS180_20180823_080451_930_707_131563 - - through - -  oriXU-RS180_20180823_082750_657_10339_131649 2018 Eastern Lake Erie Shoreline 4-Band Orthophotos - Section 2A Measurement of benthic invertebrates, zooplankton, stamp sands and metals from four beaches near Keweenaw Bay, Lake Superior in 2021 Orthophotos: oriXU-RS180_20180823_092018_494_29939_131824 - - through - - oriXU-RS180_20180823_094753_186_39571_131910 Great Lakes Restoration Initiative: Fox River Basin 2018 Data Object-Based Image Analysis Detection of Aquatic Vegetation, Lake Erie, Eastern Basin, 2018 2018 Eastern Lake Erie Shoreline 4-Band Mosaics and Orthophotos