Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > USGS Wetland and Aquatic Research Center > Coastal wetland area change in the Gulf of Mexico, 1985-2020 > Rasters of Fractional Land, FAV, SAV and Water Cover ( Show direct descendants )

37 results (9ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__USGS Wetland and Aquatic Research Center
___Coastal wetland area change in the Gulf of Mexico, 1985-2020
____Rasters of Fractional Land, FAV, SAV and Water Cover
View Results as: JSON ATOM CSV
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.
These data were used to quantify land area change in a wetlands possible zone of coastal wetlands during a 1985-2020 observation period. The datasets presented in this data release represent annual median estimates of the fractional amount of land, floating aquatic vegetation, submerged aquatic vegetation, and water per Landsat pixel. These data are intended for coarse-scale analysis of wetland change area. The datasets are summarized by 10-digit Hydrologic Unit Code (HUC10), and land area change through time is fit using a penalized regression smooth spline. The trends are therefore generalized in time and are intended to present coarse scale observations of trends in wetland area change.


map background search result map search result map L5_1986_GOM_Fractional_Land_FAV_SAV_Water L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1990_GOM_Fractional_Land_FAV_SAV_Water L5_1991_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1996_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L5_2004_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_pre_Hurricanes_Gustav_Ike L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2015_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water L8_2018_GOM_Fractional_Land_FAV_SAV_Water L8_2020_GOM_Fractional_Land_FAV_SAV_Water L5_1986_GOM_Fractional_Land_FAV_SAV_Water L5_1989_GOM_Fractional_Land_FAV_SAV_Water L5_1990_GOM_Fractional_Land_FAV_SAV_Water L5_1991_GOM_Fractional_Land_FAV_SAV_Water L5_1992_GOM_Fractional_Land_FAV_SAV_Water L5_1993_GOM_Fractional_Land_FAV_SAV_Water L5_1995_GOM_Fractional_Land_FAV_SAV_Water L5_1996_GOM_Fractional_Land_FAV_SAV_Water L5_1999_GOM_Fractional_Land_FAV_SAV_Water L5_2000_GOM_Fractional_Land_FAV_SAV_Water L5_2001_GOM_Fractional_Land_FAV_SAV_Water L5_2003_GOM_Fractional_Land_FAV_SAV_Water L5_2004_GOM_Fractional_Land_FAV_SAV_Water L5_2008_GOM_Fractional_Land_FAV_SAV_Water_pre_Hurricanes_Gustav_Ike L5_2008_GOM_Fractional_Land_FAV_SAV_Water_post_Hurricanes_Gustav_Ike L8_2013_GOM_Fractional_Land_FAV_SAV_Water L8_2015_GOM_Fractional_Land_FAV_SAV_Water L8_2016_GOM_Fractional_Land_FAV_SAV_Water L8_2018_GOM_Fractional_Land_FAV_SAV_Water L8_2020_GOM_Fractional_Land_FAV_SAV_Water