Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Earth Resources Observation and Science Center (EROS) > Evapotranspiration and Water Use Mapping ( Show direct descendants )

48 results (133ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Earth Resources Observation and Science Center (EROS)
___Evapotranspiration and Water Use Mapping
Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
The agro-hydrologic VegET (VegetationEvapotranspiration) model uses a water balance approach to simulate daily soil moisture (SM), actual evapotranspiration (ETa), and runoff (R). We enhanced the model to include snow accumulation and melt processes along with the separation of runoff into surface runoff and deep drainage and implemented the code using cloud technology. This publication is providing the supporting data for the updated methods and provides evaluation results for the United States and the Greater Horn of Africa.
The data presented here are in support of the evaluation efforts of the satellite-based actual Evapotranspiration (ETa) using the Operational Simplified Surface Energy Balance (SSEBop) model. The ETa data is currently used by the U.S. Geological Survey Famine Early Warning System Network (FEWS NET) to produce and post multitemporal ETa and ETa anomalies online on a regular basis for drought monitoring and early warning purposes and are freely available for download at https://earlywarning.usgs.gov/fews/.
thumbnail
The Landsat Collection 2 Provisional Actual Evapotranspiration Science Product is available for download from https://espa.cr.usgs.gov/. Actual Evapotranspiration (ETa) is the quantity of water that is removed from a surface due to the processes of evaporation and transpiration and is measured in millimeters (mm). ETa can be fundamental in the understanding of the spatiotemporal dynamics of water use over land surfaces. Landsat Collection 2 (C2) Provisional ETa Science Products are available globally for Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8-9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) scenes that can be successfully processed to C2 Level-2...
The availability of reliable gridded precipitation datasets is limited around the world, especially in arid regions. In this study, we utilized observations from satellite-based precipitation data and in situ rain gauge observations to determine a suitable precipitation dataset in the Middle East & North Africa (MENA) region. First, we evaluated seven different precipitation products using rain gauge observations. The validation was conducted at the daily, monthly, and annual time scales. Results indicated a weaker correlation between in situ rain gauge observation and satellite precipitation data at the daily time step (r: 0.02 to 0.44), mainly due to the lack of range in precipitation distribution. However, the...
thumbnail
Information on the spatio-temporal distribution of rainfall is very critical for addressing water related disasters, especially in the arid to semi-arid regions of the Middle East and North Africa region. However, availability of reliable rainfall datasets for the region is limited. In this study we combined observation from satellite-based rainfall data, in situ rain gauge observation and rainfall climatology to create a reliable regional rainfall dataset for Jordan, West Bank and Lebanon. First, we validated three satellite-based rainfall products using rain gauge observations obtained from Jordan (205 stations), Palestine (44 stations) and Lebanon (8 stations). We used the daily 25-km Tropical Rainfall Measuring...
thumbnail
The estimation and mapping of actual evapotranspiration (ETa) is an active area of applied research in the fields of agriculture and water resources. Thermal remote sensing-based methods, using coarse resolution satellites, have been successful at estimating ETa over the conterminous United States (CONUS) and other regions of the world. In this study, we present CONUS-wide ETa from Landsat thermal imagery-using the Operational Simplified Surface Energy Balance (SSEBop) model in the Google Earth Engine (GEE) cloud computing platform. Over 150,000 Landsat satellite images were used to produce 10 years of annual ETa (2010-2019). The accuracy assessment of the SSEBop results included point-based evaluation using monthly...
thumbnail
Understanding how different crops use water over time is essential for planning and managing water allocation, water rights, and agricultural production. The main objective of this paper is to characterize the spatiotemporal dynamics of crop water use in the Central Valley of California using Landsat-based annual actual evapotranspiration (ETa) from 2008 to 2018 derived from the Operational Simplified Surface Energy Balance (SSEBop) model. Crop water use for 10 crops is characterized at multiple scales. The Mann–Kendall trend analysis revealed a significant increase in area cultivated with almonds and their water use, with an annual rate of change of 16,327 ha in area and 13,488 ha-m in water use. Conversely, alfalfa...
The dataset consists of three raster GeoTIFF files describing the following soil properties in the US: available water capacity, field capacity, and soil porosity. The input data were obtained from the gridded National Soil Survey Geographic (gNATSGO) Database and the Gridded Soil Survey Geographic (gSSURGO) Database with Soil Data Development tools provided by the Natural Resources Conservation Service. The soil characteristics derived from the databases were Available Water Capacity (AWC), Water Content (one-third bar) (WC), and Bulk Density (one-third bar) (BD) aggregated as weighted average values in the upper 1 m of soil. AWC and WC layers were converted to mm/m to express respectively available water capacity...
thumbnail
We developed an improved approach to the parameterization of the Operational Simplified Surface Energy Balance (SSEBop) model using the Forcing and Normalizing Operation (FANO). The FANO parameterization was implemented on two computing platforms using Landsat and gridded meteorological datasets: 1) Google Earth Engine (GEE) and 2) Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA). Evaluation was conducted by comparing modeled actual evapotranspiration (ETa) estimates with AmeriFlux Eddy Covariance (EC) and water balance ETa from level-8 Hydrologic Unit Code sub-basins in the conterminous United States for five water-years (Oct-Sep; 2009, 2011, 2013, 2016, 2018). The results...
thumbnail
The dataset contains the land cover, climate (precipitation and air temperature), unit hydrograph and its characteristics (peak and time to peak), and study watershed boundaries. These data were applied to investigate the impacts of changes in land cover and climate on stormflow of evolving six urban watersheds, representing six different hydroclimate of the conterminous United States. Overall, the study found increasing trends in peak and decreasing trends in time to peak of unit hydrographs, suggesting larger and quicker stormflows driven by changes in land cover and climate. The long-term trends in unit hydrograph characteristics could be useful for projecting future stormflows and implementing flood forecasting...
This is a collection of all the input data and other related data for the modeling of EvapoTranspiration using the USGS SSEBop model.
thumbnail
Assessment of temporal trends in vegetation greenness and related influences aids understanding of recent changes in terrestrial ecosystems and feedbacks from weather, climate, and environment. We analyzed 1-km normalized difference vegetation index (NDVI) time series data (1989–2016) derived from the Advanced Very High Resolution Radiometer (AVHRR) and developed growing-season time-integrated NDVI (GS-TIN) for estimating seasonal vegetation activity across stable natural land cover in the conterminous United States (CONUS). After removing areas from analysis that had experienced land-cover conversion or modification, we conducted a monotonic trend analysis on the GS-TIN time series and found that significant positive...
thumbnail
Kansas is one of the most productive agricultural states in the United States, where agricultural irrigation is a primary user of underground and surface water. Because of low precipitation and declining groundwater levels in western and central Kansas, sustainable management of irrigation water resources is a critical issue in the agricultural productivity of the state. The objective of this study is to analyze and characterize the water use and water balance in the croplands of Kansas using satellite observations, meteorological data, and in situ irrigation water use records. We used actual evapotranspiration (ETa), precipitation, soil moisture, and irrigation water use to calculate water balance for Kansas in...
SSEBop EvapoTranspiration data available as graphics and data download.
Evapotranspiration is the process by which water is transferred from the soil or land surface to the atmosphere. It is the sum of direct evaporation from the ground and transpiration from plants. The Operational Simplified Surface Energy Balance (SSEBop) is a remote-sensing based model that provides actual evapotranspiration estimates. SSEBop uses the Simplified Surface Energy Balance (SSEBop) model and ET fractions from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) and predefined parameters for operational applications. This SSEBop layer is a time-enabled image service. It is a live feed layer that is updated automatically once a month.


map background search result map search result map Unit hydrographs of evolving urban watersheds across the United States Soil properties dataset in the United States Assembly of satellite-based rainfall datasets in situ data and rainfall climatology contours for the MENA region Actual Evapotranspiration at Landsat scale for CONUS from 2010-2019 Forcing and Normalizing Operation (FANO) method for the Operational Simplified Surface Energy Balance (SSEBop) ET model ESPA Global ET Characterizing crop water use dynamics in the Central Valley of California using landsat-derived evapotranspiration Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data Temporal Greenness Trends in Stable Natural Land Cover and Relationships with Climatic Variability across the Conterminous United States Assembly of satellite-based rainfall datasets in situ data and rainfall climatology contours for the MENA region Characterization of water use and water balance for the croplands of Kansas using satellite, climate, and irrigation data Characterizing crop water use dynamics in the Central Valley of California using landsat-derived evapotranspiration Forcing and Normalizing Operation (FANO) method for the Operational Simplified Surface Energy Balance (SSEBop) ET model Unit hydrographs of evolving urban watersheds across the United States Actual Evapotranspiration at Landsat scale for CONUS from 2010-2019 Soil properties dataset in the United States Temporal Greenness Trends in Stable Natural Land Cover and Relationships with Climatic Variability across the Conterminous United States ESPA Global ET