Folders: ROOT > ScienceBase Catalog > USGS National Research Program > USGS National Research Program Projects > Partitioning of Solutes Between Solid and Aqueous Phases ( Show all descendants )
85 results (36ms)
Location
Folder
ROOT _ScienceBase Catalog __USGS National Research Program ___USGS National Research Program Projects ____Partitioning of Solutes Between Solid and Aqueous Phases Filters
Date Range
Extensions Types Contacts Categories |
Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126 μM). During successive summer experiments – referred to as “Winchester” (2007) and “Big Rusty” (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which...
Categories: Publication;
Types: Citation;
Tags: Geobacter,
bioremediation,
iron-reduction,
sulfate-re
A plume of contaminated ground water extends from former disposal beds at the Massachusetts Military Reservation wastewater-treatment plant toward Ashumet Pond, and farther southward toward coastal ponds and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected periodically from monitoring wells and multilevel samplers during and after the disposal period to characterize the nature and extent of the contaminated ground water and to observe the water-quality changes after the wastewater disposal ceased. Data are presented...
Categories: Publication;
Types: Citation
The U.S. Geological Survey Reconstructed Trends National Synthesis study collected sediment cores from 56 lakes and reservoirs between 1992 and 2001 across the United States. Most of the sampling was conducted as part of the National Water-Quality Assessment (NAWQA) Program. The primary objective of the study was to determine trends in particle-associated contaminants in response to urbanization; 47 of the 56 lakes are in or near one of 20 U.S. cities. Sampling was done with gravity, piston, and box corers from boats and push cores from boats or by wading, depending on the depth of water and thickness of sediment being sampled. Chemical analyses included major and trace elements, organochlorine pesticides, polychlorinated...
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
The hydraulic gold-mining process used during the California Gold Rush and in many developing countries today contributes enormous amounts of sediment to rivers and streams. Commonly, accompanying this sediment are contaminants such as elemental mercury and cyanide used in the gold extraction process. We show that some of the mercury-contaminated sediment created by hydraulic gold mining in the Sierra Nevada, between 1852 and 1884, ended up over 250 kilometers (km) away in San Francisco Bay; an example of the far-reaching extent of contamination from such activities. A combination of radionuclide dating, bathymetric reconstruction, and geochemical tracers were used to distinguish the hydraulic mining sediment from...
Reactive transport simulations were conducted to model chemical reactions between metal?EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz?sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel?, zinc?, and calcium?EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created by the sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that...
Categories: Publication;
Types: Citation
Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ≤ 5500 ?g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface....
Categories: Publication;
Types: Citation
The speciation of U(VI) sorbed to synthetic hydroxyapatite was investigated using a combination of U LIII-edge XAS, synchrotron XRD, batch uptake measurements, and SEM-EDS. The mechanisms of U(VI) removal by apatite were determined in order to evaluate the feasibility of apatite-based in-situ permeable reactive barriers (PRBs). In batch U(VI) uptake experiments with synthetic hydroxyapatite (HA), near complete removal of dissolved uranium (>99.5%) to <0.05 ?M was observed over a range of total U(VI) concentrations up to equimolar of the total P in the suspension. XRD and XAS analyses of U(VI)-reacted HA at sorbed concentrations ≤4700 ppm U(VI) suggested that uranium(VI) phosphate, hydroxide, and carbonate solids...
Categories: Publication;
Types: Citation
A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2 mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 x 10(-8) to 10(-5) M in [U(VI)](tot), 7.2 to 8.0 in pH, 3.0 x 10(-3) to 6.0 x 10(-3) M in [Ca(2+)], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized...
Categories: Publication;
Types: Citation
Arsenite is more toxic and mobile than As(V) in soil and sediment environments, and thus it is advantageous to explore factors that enhance oxidation of As(III) to As(V). Previous studies showed that manganese oxides, such as birnessite (delta-MnO2), directly oxidized As(III). However, these studies did not explore the role that cation adsorption has on As(III) oxidation. Accordingly, the effects of adsorbed and nonadsorbed Zn on arsenite (As(III)) oxidation kinetics at the birnessite-water interface were investigated using batch adsorption experiments (0.1 g L(-1); pH 4.5 and 6.0; I= 0.01 M NaCl). Divalent Zn adsorption on synthetic delta-MnO2 in the absence of As(II) increased with increasing pH and caused positive...
Categories: Publication;
Types: Citation;
Tags: Arsenites,
Biological Availability,
Kinet,
adsorption
The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs...
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
Categories: Publication;
Types: Citation
A novel approach is developed for evaluating mercury fallout and applied to lake sediment cores from Hobbs Lake, near the Upper Fremont Glacier, in Wyoming.
Categories: Publication;
Types: Citation
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [ SO 4 2 - ] ∼13 mM L−1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption...
Categories: Publication;
Types: Citation;
Tags: Sorption,
Sulfate,
Ternary,
Ternary complexes,
Uranium
Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotron-based probing techniques (microfocused (?) synchrotron X-ray fluorescence (SXRF) and ?-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ≈50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped...
Categories: Publication;
Types: Citation
Uranium (U) solid-state speciation in vadose zone sediments collected beneath the former North Process Pond (NPP) in the 300 Area of the Hanford site (Washington) was investigated using multi-scale techniques. In 30 day batch experiments, only a small fraction of total U (?7.4%) was released to artificial groundwater solutions equilibrated with 1% pCO2. Synchrotron-based micro-X-ray fluorescence spectroscopy analyses showed that U was distributed among at least two types of species:? (i) U discrete grains associated with Cu and (ii) areas with intermediate U concentrations on grains and grain coatings. Metatorbernite (Cu[UO2]2[PO4]2·8H2O) and uranophane (Ca[UO2]2[SiO3(OH)]2·5H2O) at some U discrete grains, and muscovite...
Categories: Publication;
Types: Citation
|