Folder
ROOT
_ScienceBase Catalog
__Upper Midwest Environmental Sciences Center (UMESC)
___Upper Midwest Environmental Sciences Center Data
____Laurentian Great Lakes
_____Imagery
______2018 Western Lake Erie
_______2018 Western Lake Erie Mosaics
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.
High-resolution digital aerial imagery was collected on August 23 and 24, 2018, with an 80-megapixel Phase One iXU-R 180 natural color aerial camera co-mounted with a Phase One iXU-RS 160 achromatic aerial camera. Software co-registers the simultaneously collected images to create 4-band imagery that can be displayed in either true color (RGB) or color-infrared (CIR) format. The camera system is connected to the plane's positioning and orientation system and precise metadata was generated for each exposure. This imagery was intended to be used as a base layer for object-based image analysis (OBIA) to map aquatic vegetation in western Lake Erie.