Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > USGS National Research Program > USGS National Research Program Projects > Plankton Dynamics in Tidal Estuaries ( Show all descendants )

23 results (81ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__USGS National Research Program
___USGS National Research Program Projects
____Plankton Dynamics in Tidal Estuaries
View Results as: JSON ATOM CSV
Ecological observations sustained over decades often reveal abrupt changes in biological communities that signal altered ecosystem states. We report a large shift in the biological communities of San Francisco Bay, first detected as increasing phytoplankton biomass and occurrences of new seasonal blooms that began in 1999. This phytoplankton increase is paradoxical because it occurred in an era of decreasing wastewater nutrient inputs and reduced nitrogen and phosphorus concentrations, contrary to the guiding paradigm that algal biomass in estuaries increases in proportion to nutrient inputs from their watersheds. Coincidental changes included sharp declines in the abundance of bivalve mollusks, the key phytoplankton...
Categories: Publication; Types: Citation
Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from...
Categories: Publication; Types: Citation
A presumed value of shallow-habitat enhanced pelagic productivity derives from the principle that in nutrient-rich aquatic systems phytoplankton growth rate is controlled by light availability, which varies inversely with habitat depth. We measured a set of biological indicators across the gradient of habitat depth within the Sacramento–San Joaquin River Delta (California) to test the hypothesis that plankton biomass, production, and pelagic energy flow also vary systematically with habitat depth. Results showed that phytoplankton biomass and production were only weakly related to phytoplankton growth rates whereas other processes (transport, consumption) were important controls. Distribution of the invasive clam...
Categories: Publication; Types: Citation
ABSTRACT: In his seminal 1961 paper ‘The paradox of the plankton’ Am Nat 95:137-147, G. E. Hutchinson asked why many species of phytoplankton can coexist while competing for a small number of limiting resources in an unstructured habitat. Hutchinson anticipated the resolution of his paradox, recognizing that communities are organized by processes beyond resource competition including species interactions, habitat variability and dispersal. Since 1961 we have made fundamental discoveries that have revolutionized our conceptual understanding of pelagic ecology, including (1) habitat heterogeneity at all scales relevant to plankton population dynamics, (2) community shifts in response to global climate cycles, (3)...
Categories: Publication; Types: Citation
We use selected monitoring data to illustrate how localized water diversions from seasonal barriers, gate operations, and export pumps alter water quality across the Sacramento-San Joaquin Delta (California). Dynamics of water-quality variability are complex because the Delta is a mixing zone of water from the Sacramento and San Joaquin Rivers, agricultural return water, and the San Francisco Estuary. Each source has distinct water-quality characteristics, and the contribution of each source varies in response to natural hydrologic variability and water diversions. We use simulations with a tidal hydrodynamic model to reveal how three diversion events, as case studies, influence water quality through their alteration...
Categories: Publication; Types: Citation
Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This...
Categories: Publication; Types: Citation
ABSTRACT: A central challenge of coastal ecology is sorting out the interacting spatial and temporal components of environmental variability that combine to drive changes in phytoplankton biomass. For 2 decades, we have combined sustained observation and experimentation in South San Francisco Bay (SSFB) with numerical modeling analyses to search for general principles that define phytoplankton population responses to physical dynamics characteristic of shallow, nutrient-rich coastal waters having complex bathymetry and influenced by tides, wind and river flow. This study is the latest contribution where we investigate light-limited phytoplankton growth using a numerical model, by modeling turbidity as a function...
Categories: Publication; Types: Citation
"Estuaries are of high socioeconomic importance with 22 of the 32 largest cities in the world located on river estuaries. Estuaries bring together fluxes of fresh and saline water, as well as fluvial and marine sediments, and contain high biological diversity. Increasingly sophisticated field observation technology and numerical modeling have produced significant advances in our understanding of the physical properties of estuaries over the last decade." "This book introduces a classification for estuaries before presenting the basic physics and hydrodynamics of estuarine circulation and the various factors that modify it in time and space. It then covers special topics at the forefront of research such as turbulence,...
Categories: Publication; Types: Citation
Seasonal fluctuations of plant biomass and photosynthesis are key features of the Earth system because they drive variability of atmospheric CO2, water and nutrient cycling, and food supply to consumers. There is no inventory of phytoplankton seasonal cycles in nearshore coastal ecosystems where forcings from ocean, land and atmosphere intersect. We compiled time series of phytoplankton biomass (chlorophyll a) from 114 estuaries, lagoons, inland seas, bays and shallow coastal waters around the world, and searched for seasonal patterns as common timing and amplitude of monthly variability. The data revealed a broad continuum of seasonal patterns, with large variability across and within ecosystems. This contrasts...
Categories: Publication; Types: Citation
Phytoplankton variability is a primary driver of chemical and biological dynamics in the coastal zone because it directly affects water quality, biogeochemical cycling of reactive elements, and food supply to consumer organisms. Much has been learned about patterns of phytoplankton variability within individual ecosystems, but patterns have not been compared across the diversity of ecosystem types where marine waters are influenced by connectivity to land. We extracted patterns from chlorophyll- a series measured at 84 estuarine–coastal sites, using a model that decomposes time series into an annual effect, mean seasonal pattern, and residual “events.” Comparisons across sites revealed a large range of variability...
Categories: Publication; Types: Citation
Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099...
Categories: Publication; Types: Citation