Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2012 Projects > Understanding the Varying Responses of Fish Populations to Future Climate > Approved Products ( Show all descendants )

4 results (9ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Northeast CASC
____FY 2012 Projects
_____Understanding the Varying Responses of Fish Populations to Future Climate
______Approved Products
View Results as: JSON ATOM CSV
We present a case-study evaluation of gillnet catches of Walleye Sander vitreus to assess potential effects of large-scale changes in Oneida Lake, New York, including disruption of trophic interactions by double-crested cormorants Phalacrocorax auritus and invasive dreissenid mussels. We used the empirical long-term gillnet time series and a negative binomial linear mixed model to partition variability into spatial and coherent temporal variance components, and we propose that variance partitioning can help quantify spatiotemporal variability and examine if variance structure differs before and after large-scale perturbation. Here, we found that average catch and total variability of catches decreased following...
Abstract (from http://www.tandfonline.com/doi/full/10.1080/00028487.2016.1150879): Long-term sampling of fisheries data is an important source of information for making inferences about the temporal dynamics of populations that support ecologically and economically important fisheries. For example, time series of catch-per-effort data are often examined for the presence of long-term trends. However, it is also of interest to know whether certain sampled locations are exhibiting temporal patterns that deviate from the overall pattern exhibited across all sampled locations. Patterns at these “unusual” sites may be the result of site-specific abiotic (e.g., habitat) or biotic (e.g., the presence of an invasive species)...
The number of fish collected in routine monitoring surveys often varies from year to year, from lake to lake, and from location to location within a lake. Although some variability in fish catches is expected across factors such as location and season, we know less about how large‐scale disturbances like climate change will influence population variability. The Laurentian Great Lakes in North America are the largest group of freshwater lakes in the world, and they have experienced major changes due to fluctuations in pollution and nutrient loadings, exploitation of natural resources, introductions of non‐native species, and shifting climatic patterns. In this project, we analyzed established long‐term data about...
Abstract: (from ScienceDirect): Empirical evidence has shown increased variability in harvest and recruitment of exploited fish populations, which can result directly from exploitation or indirectly from interactions between external drivers and the internal dynamics of age-structured populations. We investigated whether predation in a freshwater system could affect a prey fish population, in the same way fishing affects targeted populations. Using fishery-independent trawl survey data and a suite of quantitative indicators, we evaluated changes in the alewife population in Lake Michigan. Our results provide evidence for a reduction in the mean spawner age, a reduction in the diversity of age classes and the distribution...