Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > National and Regional Climate Adaptation Science Centers > Northeast CASC > FY 2015 Projects > Science to Inform the Reconnection of Floodplains and Restoration of Green Space to Minimize Risk in the Future > Approved Products ( Show all descendants )

3 results (131ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__National and Regional Climate Adaptation Science Centers
___Northeast CASC
____FY 2015 Projects
_____Science to Inform the Reconnection of Floodplains and Restoration of Green Space to Minimize Risk in the Future
______Approved Products
View Results as: JSON ATOM CSV
Abstract: This research investigates how changes to floodplains in the Connecticut River Basin impact flood events. Climate impacted flows and increased development within the floodplain could lead to worsening flood events and less habitat availability for threatened species. Potential future conditions are evaluated through a wide range of scenarios to assess the range of possible impacts using a HEC-RAS 2D model. Three different flood events, 1-yr, 10-yr, and 100-yr, are evaluated for each scenario. Five metrics, Discharge, Depth, Time of Arrival, Flooding Duration, and Number of Buildings Flooded, are tracked for each scenario. These metrics are compared to select the ideal course of action given multiple potential...
The “Reconnecting Floodplains and Restoring Green Space as a Management Strategy to Minimize Risk and Increase Resilience in the Context of Climate and Landscape Change” project explores green infrastructure opportunities to manage flows, connections, and watersheds in order to improve both flood protection and ecosystem services. This project’s research specifically investigates how restoring floodplains would impact human welfare and environmental conservation. Its research objectives are addressed in two parts: 1) developing a hydraulic model to illustrate how changes in floodplain management may impact flooding along the Connecticut River, and 2) developing a geo-spatial model that demonstrates the distribution...
Abstract: Active geomorphic features of rivers like sandbars provide habitat for endangered and threatened riparian plant and animal species. However, human development has altered flow and sediment regimes, thus impairing formation of sandbars and islands. Large scale mapping of the fluvial geomorphology in river ecosystems like the Connecticut River is are necessary to understand the dynamics of these features and preserve habitat. Orthophotographs from 2012 from United States Department of Agriculture's Farm Service Agency (FSA), National Agriculture Imagery Program (NAIP) were used to develop a model in ArcGIS Pro to identify fluvial geomorphic features in the Connecticut River and 12 of its major tributaries....