Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > LC MAP - Landscape Conservation Management and Analysis Portal > Great Basin Landscape Conservation Cooperative > Great Basin LCC Supported Research > Quantifying vulnerability of quaking aspen woodlands and associate bird communities to global climate change in the northern Great Basin > Final Products ( Show all descendants )

5 results (52ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__LC MAP - Landscape Conservation Management and Analysis Portal
___Great Basin Landscape Conservation Cooperative
____Great Basin LCC Supported Research
_____Quantifying vulnerability of quaking aspen woodlands and associate bird communities to global climate change in the northern Great Basin
______Final Products
View Results as: JSON ATOM CSV
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under...
Quaking aspen (Populus tremuloides Michx.) is the most widespread tree species in North America, and it is found throughout much of the Mountain West (MW) across a broad range of bioclimatic regions. Aspen typically regenerates asexually and prolifically after fire, and due to its seral status in many western conifer forests, aspen is often considered dependent upon disturbance for persistence. In many landscapes, historical evidence for post-fire aspen establishment is clear, and following extended fire-free periods senescing or declining aspen overstories sometimes lack adequate regeneration and are succeeding to conifers. However, aspen also forms relatively stable stands that contain little or no evidence of...
Quaking aspen (Populus tremuloides) woodlands are expected to be sensitive to climate change, and have declined in parts of the West. Great Basin mountain ranges may be near the limits of aspen’s climatic threshold, in terms of temperature and aridity, and thus are particularly vulnerable to climate change. Birds associating with aspen are likely to undergo regional population fluctuations and changes in distribution as a result of changes in aspen availability or distribution. Thus, understanding the habitat relationships of avian communities in aspen and other montane cover types is important for tracking the impacts of future landscape change. The mountainous terrain of the Humboldt-Toiyabe National Forest in...
• Aspen communities are biologically rich and ecologically valuable, yet they face myriad threats, including changing climate, altered fire regimes, and excessive browsing by domestic and wild ungulates.• Recognizing the different types of aspen communities that occur in the Great Basin, and being able to distinguish between seral and stable aspen stands, can help managers better identify restoration needs and objectives.• Identifying key threats to aspen regeneration and persistence in a given stand or landscape is important to designing restoration plans, and to selecting appropriate treatment types.• Although some aspen stands will need intensive treatment (e.g., use of fire) to persist or remain healthy, other...
Quaking aspen is generally considered to be a fire-adapted species because it regenerates prolifically after fire, and it can be replaced by more shade-tolerant tree species in the absence of fire. As early-successional aspen stands transition to greater conifer-dominance, they become increasingly fire prone, until fire returns, and aspen again temporarily dominate. While this disturbance-succession cycle is critical to the persistence of aspen on many landscapes, some aspen stands persist on the landscape without fire. The complex role of fire is an important consideration for developing conservation and restoration strategies intended to sustain aspen.