Skip to main content
Advanced Search

Folders: ROOT > ScienceBase Catalog > Ohio-Kentucky-Indiana Water Science Center > Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative ( Show all descendants )

7 results (35ms)   

Location

Folder
ROOT
_ScienceBase Catalog
__Ohio-Kentucky-Indiana Water Science Center
___Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative
View Results as: JSON ATOM CSV
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...
thumbnail
These point clouds were derived from low-altitude (approximately 92-m above ground surface) images collected from unmannned aerial system (UAS) flights over an edge-of-field, paired sampling site that is part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in each of the two fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, controlled in pre-planned missions using Mission Planner. UAS and the multispectral camera (MicaSense RedEdge) both recorded geospatial...
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...
thumbnail
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...
These orthophotos and digital surface model (DSM) were derived from low-altitude (approximately 92-m above ground surface) images collected from Unmanned Aerial System (UAS) flights over edge-of-field sites that are part of U.S. Geological Survey (USGS) Great Lakes Restoration Initiative (GLRI) monitoring. The objective of this UAS photogrammetry data collection was to provide information on the tile-drain network in individual fields with the goal of understanding already observed patterns in runoff amount and water quality from these sites. A 3DR Solo quadcopter served as the flight vehicle, flights were pre-planned using Mission Planner, and flights were flown using Tower. Geospatial data were originally in WGS84...


    map background search result map search result map Low-altitude multispectral and thermal-infrared imagery from agricultural fields, Black Creek basin, Allen County, IN - spring 2017 Low-altitude visible imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Indiana Surface Water 1 and 2 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Michigan Flume 2 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Bioreactor Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Surface Water 3 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Surface Water 4 and 5 Low-altitude visible and multispectral imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Ohio Surface Water 1 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Surface Water 3 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Surface Water 4 and 5 Low-altitude visible and multispectral imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Ohio Surface Water 1 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Michigan Flume 2 Low-altitude visible, multispectral, and thermal-infrared imagery from edge-of-field monitoring sites for Great Lakes Restoration Initiative - Wisconsin Bioreactor Low-altitude multispectral and thermal-infrared imagery from agricultural fields, Black Creek basin, Allen County, IN - spring 2017