Folders: ROOT > ScienceBase Catalog > USGS Data Release Products > Integrated modeling of climate and land change impacts on future dynamic wetland habitat – a case study from California’s Central Valley ( Show all descendants )
5 results (67ms)
Location
Folder
ROOT _ScienceBase Catalog __USGS Data Release Products ___Integrated modeling of climate and land change impacts on future dynamic wetland habitat – a case study from California’s Central Valley Filters
Date Range
Contacts Categories Tag Types Tag Schemes |
This dataset consists of raster geotiff outputs of 30-year average annual land use and land cover transition probabilities for the California Central Valley modeled for the period 2011-2101 across 5 future scenarios. The full methods and results of this research are described in detail in “Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley” (2021). Land-use and land-cover change for California's Central Valley were modeled using the LUCAS model and five different scenarios were simulated from 2011 to 2101 across the entirety of the valley. The five future scenario projections originated from the four...
This spreadsheet dataset (.csv file) contains annual land-use and land cover area in square kilometers (km2) by scenario, timestep, WEAP hydrologic zone, and 4 sub-regions within the broader California Central Valley, modeled using the LUCAS ST-Sim for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These...
Categories: Data;
Tags: California,
California Valley,
agriculture,
boundaries,
climatologyMeteorologyAtmosphere,
This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management...
This spreadsheet dataset (.csv file) contains annual modeled output of land-use and land-cover change transitions in square kilometers (km2) by specified transition group, scenario, timestep, WEAP hydrologic zone, and 4 sub-regions within the broader California Central Valley, modeled using the LUCAS ST-SIM for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone...
Categories: Data;
Tags: California,
California Valley,
Land Use and Land Cover Map,
agriculture,
boundaries,
This dataset consists of raster geotiff outputs from a series of modeling simulations for the California Central Valley. The full methods and results of this research are described in detail in “Integrated modeling of climate, land use, and water availability scenarios and their impacts on managed wetland habitat: A case study from California’s Central Valley” (2021). Land-use and land-cover change for California's Central Valley were modeled using the LUCAS model and five different scenarios were simulated from 2011 to 2101 across the entirety of the valley. The five future scenario projections originated from the four scenarios developed as part of the Central Valley Landscape Conservation Project (http://climate.calcommons.org/cvlcp...
|
|