Skip to main content
Advanced Search

Filters: Tags: Fox Hills aquifer (X)

16 results (21ms)   

View Results as: JSON ATOM CSV
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the glacial aquifer system in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the upper Fort Union aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the Lower Hell Creek aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
A three-dimensional groundwater flow model was developed to characterize groundwater resources the uppermost principal aquifers in the Williston structural basin in parts of Montana, North Dakota, and South Dakota in the United States and of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability of the area. The uppermost principal aquifers are comprised of the glacial, lower Tertiary, and Upper Cretaceous aquifer systems. The model was developed as a part of the U.S. Geological Survey Water Availability and Use Science Program's effort to conduct large-scale multidisciplinary regional studies of groundwater availability. The numerical model is intended to be used to...
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the Fox Hills aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the lower Fort Union aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the lower Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the Fox Hills aquifer in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the Upper Hell Creek hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the middle Fort Union hydrogeologic unit in the Williston structural basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the middle Fort Union hydrogeologic unit in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the thickness, in feet, of the upper Fort Union aquifer in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
These data were released prior to the October 1, 2016 effective date for the USGS’s policy dictating the review, approval, and release of scientific data as referenced in USGS Survey Manual Chapter 502.8 Fundamental Science Practices: Review and Approval of Scientific Data for Release. These data represent the altitude, in feet above North American Vertical Datum of 1988 (NAVD88), of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River basin. The data are presented as ASCII text files that can be converted to continuous raster format.
thumbnail
A three-dimensional groundwater flow model was developed to characterize groundwater resources of the uppermost principal aquifers in the Williston structural basin in parts of Montana, North Dakota, and South Dakota in the United States and of Manitoba and Saskatchewan in Canada as part of a detailed assessment of the groundwater availability of the area. The uppermost principal aquifers are comprised of the glacial, lower Tertiary, and Upper Cretaceous aquifer systems. The model was developed as a part of the U.S. Geological Survey Water Availability and Use Science Program's effort to conduct large-scale multidisciplinary regional studies of groundwater availability. The numerical model was used to (1) simulate...


    map background search result map search result map MODFLOW-NWT model used to assess groundwater availability in the uppermost principal aquifer systems of the Williston structural basin, United States and Canada MODFLOW-NWT model of predictive simulations of groundwater response to selected scenarios in the Williston Basin, United States and Canada Altitude of the top of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River structural basin Thickness of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River structural basin Thickness of the lower Fort Union aquifer in the Powder River structural basin Thickness of the middle Fort Union hydrogeologic unit in the Powder River structural basin Thickness of the upper Fort Union aquifer in the Powder River structural basin Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin Thickness of the upper Fort Union aquifer in the Powder River structural basin Thickness of the middle Fort Union hydrogeologic unit in the Powder River structural basin Thickness of the lower Fort Union aquifer in the Powder River structural basin Thickness of the Upper Hell Creek hydrogeologic unit in the Powder River structural basin Thickness of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River structural basin Altitude of the top of the combined Lower Hell Creek and Fox Hills aquifers in the Powder River structural basin MODFLOW-NWT model used to assess groundwater availability in the uppermost principal aquifer systems of the Williston structural basin, United States and Canada MODFLOW-NWT model of predictive simulations of groundwater response to selected scenarios in the Williston Basin, United States and Canada