Skip to main content
Advanced Search

Filters: Tags: Mississippi River Valley Alluvial aquifer (X)

65 results (33ms)   

View Results as: JSON ATOM CSV
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic structure at depths up to 100 meters, depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that...
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an ATV, with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square kilometers, with 25 m separation between survey lines. Data were manually edited for noise sources such as powerlines or other buried structures, and averaged to regular output soundings every 5 m along survey lines. This data release contains the processed data that have been averaged and culled to produce final resistivity models. Digital data...
thumbnail
This dataset is the raster, in feet, of the potentiometric-surface map, spring 2018, Mississippi River Valley alluvial (MRVA) aquifer. The raster cell size is 1,000 meters; the raster altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). The raster was interpolated using (1) most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages, and (2) potentiometric-surface contours.
thumbnail
This dataset is a point shapefile of wells measured for the potentiometric surface maps of the Mississippi River Valley alluvial aquifer (MRVA) in Spring 2016, 2018, and 2020. The data provided for each well considered in the applicable potentiometric surface map are the water-level date, altitude [relative to the North American vertical datum of 1988 (NAVD88)], a useYYYY code (which is positive if the water level was used in the potentiometric surface map for that year), a use comment (which is populated for water levels not used), and the water-level change values, for 2016-18, 2018-20, and 2016-20 for water levels with positive useYYYY codes for the applicable years. The data provided for each streamgage considered...
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known..The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
This dataset captures in digital form the results of previously published U.S. Geological Survey (USGS) Water Mission Area studies related to water resource assessment of Cenozoic strata and unconsolidated deposits within the Mississippi Embayment and the Gulf Coastal Plain of the south-central United States. The data are from reports published from the late 1980s to the mid-1990s by the Gulf Coast Regional Aquifer-System Analysis (RASA) studies and in 2008 by the Mississippi Embayment Regional Aquifer Study (MERAS). These studies, and the data presented here, describe the geologic and hydrogeologic units of the Mississippi embayment, Texas coastal uplands, and the coastal lowlands aquifer systems, south-central...
Tags: 3D, Alabama, Arkansas, Cane River Formation, Carrizo Sand, All tags...
thumbnail
This dataset is a raster surface, in feet, of the depth to water, spring 2016, Mississippi River Valley alluvial aquifer (MRVA). The raster cell size is 1,000 meters (3,280.8 ft). . The raster was interpolated using (1) depth-to-water (GW_D2W) data from wells and (2) an assumed value of zero for depth to water at streamgages (SW_D2W) because the precise depth to groundwater at the streamgage is not known. The streamgage data is used only when it appears the regional aquifer and surface water are hydrologically connected.
thumbnail
Shallow soil characteristics were mapped near Shellmound, Mississippi, using the DualEM 421 electromagnetic sensor in October 2018. Data were acquired by towing the DualEM sensor on a wheeled cart behind an ATV, with the sensor at a height of 0.432 meters (m) above the ground surface. Approximately 175 line-kilometers of data were acquired over an area of nearly four square kilometers, with 25 m separation between survey lines. Raw data are provided here.
thumbnail
This dataset contains surface-water-altitude (SWA) data from streamgages that was used or considered to create a potentiometric-surface map for the Mississippi River Valley alluvial (MRVA) aquifer for spring 2018. The surface-water-altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). The streamgages are measured continuously. The streamgage measurement that was used was from early April 2018 and is an estimate of the groundwater altitudes at the gage location. The resultant potentiometric-surface contours and raster represents the generalized central tendency for spring 2018, but it would not be useful for some purposes, such as for calibration of a groundwater-flow model for early...
thumbnail
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths up to 300 meters (m), depending on the subsurface resistivity; a Scintrex CS-3 cesium vapor magnetometer that detects changes in deep (hundreds of meters to kilometers) geologic structure based on variations in the magnetic properties of different formations; and a Radiation Solutions RS-500 spectrometer that detects the...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Arkansas, Arkansas River, GGGSC, Geology, Geophysics, and Geochemistry Science Center, Geophysics, All tags...
thumbnail
This dataset contains the contours, in feet, of the potentiometric-surface, spring 2020, Mississippi River Valley alluvial aquifer (MRVA). The contours are referenced to the North American Vertical Datum of 1988 (NAVD 88). The contours were derived from most of the available groundwater-altitude (GWA) data from wells and surface-water-altitude (SWA) data from streamgages, measured in for spring 2020. The potentiometric contours ranged from 10 to 340 feet (3 to 104 meters) above NAVD 88. The regional direction of groundwater flow was generally towards the south-southwest, except in areas of groundwater-altitude depressions, where groundwater flows into the depressions, and near rivers, where groundwater flow generally...
thumbnail
During the spring and summer of 2020, the U.S. Geological Survey, Lower Mississippi – Gulf Water Science Center, conducted single well slug tests on selected wells within the Mississippi Alluvial Plain in Arkansas and Mississippi to estimate hydraulic conductivity (K) and transmissivity (T) values for the aquifers in which the wells are screened. A total of 324 tests were conducted on 48 wells. The computer software AQTESOLV version 4.50.002 (HydroSOLVE, Inc., 2007) was used to interpret the slug test data to estimate K and T values. Mean estimates of K for the 44 wells screened in the Mississippi River Valley alluvial aquifer ranged from 3 to 401 feet per day (ft/day) and mean estimates of T ranged from 285 to...
Categories: Data; Types: ArcGIS REST Map Service, ArcGIS Service Definition, Downloadable, Map Service; Tags: 500-Foot Sand Memphis Sand, 500-Foot Sand Memphis Sand, 500-foot Sand, Ar, Arkansas, All tags...
thumbnail
Airborne geophysical surveys were acquired in March 2018 and May 25 through August 7, 2021 using a helicopter-based platform. These surveys were collected along 10,706 line-kilometers (line-km) within selected areas of the Mississippi Alluvial Plain (MAP) and the Chicot Aquifer System in the southeastern United States. The airborne geophysical surveys include electromagnetic, magnetic, and radiometric sensor data collected in rivers and levees throughout the two areas to evaluate groundwater and surface-water interaction, riverine ecosystems, and infrastructure. This data release contains three child items that provide: Minimally processed (raw) data supplied by the airborne contractor (Xcalibur Multiphysics)...
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: "Geomorphology"], "Hydrology", "Sedimentology", "Stratigraphy", "Water Resources", All tags...
thumbnail
Bottom altitudes of the Mississippi River Valley alluvial aquifer (MRVA) were compiled from interpretations of subsurface geophysical logs (log picks) at about 10,000 boreholes and wells located throughout the Mississippi Alluvial Plain (MAP) that were available from previous investigations. Five sources of the bottom altitude data are listed numerically in the Cross Reference section (below) and correspond with the Ref_code listed in the .shp dataset. Borehole geophysical data (log picks) were referenced (corrected) to the National Elevation Dataset (NED) 10-meter digital elevation model (DEM; https://nationalmap.gov/elevation.html). Log picks that required a DEM correction of less than 20 feet were retained for...
thumbnail
A potentiometric surface map for spring 2016 was created for the Mississippi River Valley alluvial (MRVA) aquifer, which was referenced to the North American Vertical Datum of 1988 (NAVD 88), using most of the available groundwater-altitude data from wells and surface-water-altitude data from streamgages. Most of the wells were measured annually or one time, after installation, but some wells were measured more than one time in a year and a small number of wells were measured continually. Streamgages were typically operated continuously. The potentiometric surface map for 2016 was created as part of the U.S. Geological Survey (USGS) Water Availability and Use Science Program to support investigations that characterize...
thumbnail
This dataset contains groundwater (GW)-altitude (ALT) data from wells that was used or considered to create a potentiometric-surface map for the Mississippi River Valley alluvial (MRVA) aquifer for spring 2018. The groundwater-altitude data was referenced to the North American Vertical Datum of 1988 (NAVD 88). Most of the wells were measured annually, but some wells were measured more than one time in a year and a small number of wells were measured continuously. Groundwater-altitude data were from wells measured in spring 2018. Spring-time measurements were preferred because water levels had generally recovered from pumping during the previous irrigation season and it was before pumping began for the current irrigation...
Monthly rollup of the discrete and daily-aligned groundwater levels were created from Robinson, Asquith, and Seanor (2020) data products with removal of the paired groundwater and surface-water sites listed by Robinson, Killian, and Asquith (2020). The monthly rollup is composed of (1) computed monthly "mean" values regardless of whether a well had one measurement in the month or up to about 30 days of daily-mean values, (2) standard deviation of the water levels within the month (sample size is generally just one day but for recorder sites could be up to about 30 days), (3) the last water level in the month, and (4) monthly counts of water levels. The algorithm is available within the sources of visGWDBmrva (Asquith...
Groundwater-level data, in conjunction with attendant metadata and covariates (predictor variables) data, for the Mississippi River Valley alluvial aquifer (MRVA) are used to support statistical and process-based numerical modeling. This page represents a collection of groundwater-level data within the expanse of the Mississippi Alluvial Plain (MAP) (Painter and Westerman, 2018) and are derived from well-specific periods of record of discrete measurements and continuous water levels aggregated to daily statistics. The basic data structures are intended also to serve as interpretability standards for use by statistical software such as described by Asquith and Seanor (2019) and Asquith and others (2019).
thumbnail
Site data contained in the ScrIntrvls_AllSrcRefs_AllWellsRev.csv dataset define the top and bottom altitudes of well screens in 64,763 irrigation wells completed in the Mississippi River Valley alluvial aquifer (MRVA) that constitute a production zone in the Mississippi Alluvial Plain (MAP) extending across the midwestern and southern United States from Illinois to Louisiana. Each well entry contains an Enumerated Domain Value of the Attribute Label SrcRefNo to identify the state environmental agency that contributed to the database, and enumerated values are associated with specific state agencies by using the Enumerated Domain Value Definition. Screen-top and -bottom altitudes and land surface are referenced (corrected)...


map background search result map search result map (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet Digital surfaces of the bottom altitude and thickness of the Mississippi River Valley alluvial aquifer and site data within the Mississippi Alluvial Plain project region Airborne EM, magnetic, and radiometric survey data b_Surface_WaterPts Surface-water-altitude data, from streamgages, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 d1_Pot2018RasterFt Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in feet a_GroundwaterPts Groundwater-altitude data, from monitoring-networks wells, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 AEM inverted resistivity models Unprocessed ground-based EM survey data Processed ground-based EM survey data F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 c_Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2020, in feet Hydraulic Conductivity and Transmissivity Estimates from Slug Tests in Wells Within the Mississippi Alluvial Plain, Arkansas and Mississippi, 2020 Digital surfaces and site data of well-screen top and bottom altitudes defining the irrigation production zone of the Mississippi River Valley alluvial aquifer within the Mississippi Alluvial Plain project region F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet Airborne electromagnetic, magnetic, and radiometric surveys of the Mississippi Alluvial Plain and Chicot Aquifer System, March 2018 and May - August 2021 Surface and subsurface geologic data from previous USGS studies of the Gulf Coast region, south-central United States Unprocessed ground-based EM survey data Processed ground-based EM survey data Airborne EM, magnetic, and radiometric survey data Hydraulic Conductivity and Transmissivity Estimates from Slug Tests in Wells Within the Mississippi Alluvial Plain, Arkansas and Mississippi, 2020 AEM inverted resistivity models a_GroundwaterPts Groundwater-altitude data, from monitoring-networks wells, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 c_Spatial dataset of the potentiometric-surface contours, Mississippi River Valley alluvial aquifer, spring 2020, in feet b_Surface_WaterPts Surface-water-altitude data, from streamgages, considered for the potentiometric-surface map, Mississippi River Valley alluvial aquifer, spring 2018 Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020 (e1) Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2016, raster format, in feet Airborne electromagnetic, magnetic, and radiometric surveys of the Mississippi Alluvial Plain and Chicot Aquifer System, March 2018 and May - August 2021 F04_wlc161820_Water-level change, spring to spring, 2016-18, 2018-20, 2016-20, Mississippi River Valley alluvial aquifer, in feet F01_d2w2016 Depth to water, spring 2016, Mississippi River Valley alluvial aquifer, raster format, in feet F03_d2w2020_Depth to water, spring 2020, Mississippi River Valley alluvial aquifer, raster format, in feet d1_Pot2018RasterFt Potentiometric surface, Mississippi River Valley alluvial aquifer, spring 2018, raster format, in feet Digital surfaces of the bottom altitude and thickness of the Mississippi River Valley alluvial aquifer and site data within the Mississippi Alluvial Plain project region Digital surfaces and site data of well-screen top and bottom altitudes defining the irrigation production zone of the Mississippi River Valley alluvial aquifer within the Mississippi Alluvial Plain project region Surface and subsurface geologic data from previous USGS studies of the Gulf Coast region, south-central United States