Skip to main content
Advanced Search

Filters: Tags: Paradox Basin (X) > Categories: Publication (X)

3 results (8ms)   

View Results as: JSON ATOM CSV
The salt valleys over the axis of the salt-cored anticlines in the Paradox fold and fault belt (Canyonlands, Utah and Colorado) are created by subsidence of the anticline crests. Traditionally, the collapse of the anticlinal crests was attributed to dissolution of the salt walls (diapirs) forming the anticline cores. Recent studies based on scaled physical models and field observations propose that the salt valleys are a result of regional extension and that salt dissolution had only a minor influence in the development of the axial depressions. This paper presents several arguments and lines of evidence that refute the tectonic model and support the salt dissolution subsidence interpretation. The development of...
The salt valleys over the axis of the salt-cored anticlines in the Paradox fold and fault belt (Canyonlands, Utah and Colorado) are created by subsidence of the anticline crests. Traditionally, the collapse of the anticlinal crests was attributed to dissolution of the salt walls (diapirs) forming the anticline cores. Recent studies based on scaled physical models and field observations propose that the salt valleys are a result of regional extension and that salt dissolution had only a minor influence in the development of the axial depressions. This paper presents several arguments and lines of evidence that refute the tectonic model and support the salt dissolution subsidence interpretation. The development of...
Integrated fluvial sequence stratigraphic and palaeosol analysis can be used to better reconstruct depositional systems, but these approaches have not been combined to examine halokinetic minibasins. This study characterizes the temporal and spatial patterns of lithofacies and palaeosols in a sequence stratigraphic framework to reconstruct a model of minibasin evolution and identify halokinetic influences on fluvial deposition. This research documents fluvial cycles and stratigraphic hierarchy, palaeosol maturity and apparent sediment accumulation rates in the Chinle Formation within the Big Bend minibasin. This study also uses palaeosols to help identify fluvial aggradational cycle (FAC) sets. The Chinle is divided...