Skip to main content
Advanced Search

Filters: Tags: Tsunami (X) > Types: OGC WMS Layer (X)

7 results (8ms)   

View Results as: JSON ATOM CSV
thumbnail
Subaerial landslides at the head of Barry Arm Fjord in southern Alaska could generate tsunamis (if they rapidly failed into the Fjord) and are therefore a potential threat to people, marine interests, and infrastructure throughout the Prince William Sound region. Knowledge of ongoing landslide movement is essential to understanding the threat posed by the landslides. Because of the landslides' remote location, field-based ground monitoring is challenging. Alternatively, periodic acquisition and interferometric processing of satellite-based synthetic aperture radar data provide an accurate means to remotely monitor landslide movement. Interferometric synthetic aperture radar (InSAR) uses two Synthetic Aperture...
thumbnail
Summary This data release contains postprocessed model output from a simulation of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A simulated displacement wave was generated by rapid motion of unstable material into Barry Arm fjord. We consider the wave propagation in Harriman Fjord and Barry Arm, western Prince William Sound (area of interest and place names depicted in Figure 1). We consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b). As in Barnhart and others (2021c), we used a simulation setup similar to Barnhart and others (2021a, 2021b), but our results differ because we used different topography and bathymetry datasets....
thumbnail
Subaerial landslides at the head of the Barry Arm fjord remain a tsunami threat for the Prince William Sound region in southern Alaska. Tasked RADARSAT-2 synthetic aperture radar (SAR) data from two ultrafine beam modes (2 m), U19 and U15, were used to measure landslide movement of slopes near the toe of the Barry Glacier between 21 May 2021 and 5 November 2021. Data were acquired every 24 days, with U19 beginning on 21 May 2021 and U15 beginning on 28 May 2021. For a few planned acquisition dates, scenes were not captured because of technical issues. Interferometric synthetic aperture radar (InSAR) deformation maps (interferograms) are provided in wrapped phase (line-of-sight (LOS) phase in radians between 0 and...
thumbnail
This data release contains four GIS shapefiles, one Google Earth kmz file, and five metadata files that summarize results from Interferometric Synthetic Aperture Radar (InSAR) analyses in the Glacier Bay region of Alaska and British Columbia. The principal shapefile (Moving_Ground) and the kmz file (GBRegionMovingGround) contain polygons delineating slow-moving (0.5-6 cm/year in the radar line-of-sight direction) landslides and subsiding fan deltas in the region. Landslides and fan deltas were identified from displacement signals captured by InSAR interferograms of Sentinel-1 C-band Synthetic Aperture Radar images. The images were acquired at 12-day intervals from June to October from 2018 to 2020. We applied the...
thumbnail
Summary This data release contains postprocessed model output from simulations of hypothetical rapid motion of landslides, subsequent wave generation, and wave propagation. A modeled tsunami wave was generated by rapid motion of unstable material into Barry Arm Fjord. This wave propagated through Prince William Sound and then into Passage Canal east of Whittier. Here we consider only the largest wave-generating scenario presented by Barnhart and others (2021a, 2021b) and use a simulation setup similar to that work. The results presented here are not identical to those presented in Barnhart and others (2021a, 2021b) because the results in this data release were obtained using an expanded dataset of topography and...
thumbnail
Mass-wasting events that displace water, whether they initiate from underwater sources (submarine landslides) or subaerial sources (subaerial-to-submarine landslides), have the potential to cause tsunami waves that can pose a significant threat to human life and infrastructure in coastal areas (for example towns, cruise ships, bridges, oil platforms, and communication lines). Sheltered inlets and narrow bays can be locations of especially high risk as they often have higher human populations, and the effects of water displacement from moving sediment can be amplified as compared to the effects from similarly sized mass movements in open water. In landscapes undergoing deglaciation, such as the fjords and mountain...
thumbnail
Two active landslides at and near the retreating front of Barry Glacier at the head of Barry Arm Fjord in southern Alaska (Figure 1) could generate tsunamis if they failed rapidly and entered the water of the fjord. Landslide A, at the front of the glacier, is the largest, with a total volume estimated at 455 M m3 (Dai et al, 2020). Historical photographs from Barry Arm indicate that Landslide A initiated in the mid twentieth century, but there was a large pulse of movement between 2010 and 2017 when Barry Glacier thinned and retreated from about 1/2 of the toe of Landslide A (Dai et al., 2020). The glacier has continued to retreat since 2017. Interferometric synthetic aperture radar (InSAR) investigations of the...


    map background search result map search result map Inventory map of submarine and subaerial-to-submarine landslides in Glacier Bay, Glacier Bay National Park and Preserve, Alaska Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Map of landslide structures and kinematic elements at Barry Arm, Alaska in the summer of 2020 Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Slow-moving landslides and subsiding fan deltas mapped from Sentinel-1 InSAR in the Glacier Bay region, Alaska and British Columbia, 2018-2020 Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Simulated inundation extent and depth at Whittier, Alaska resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Map of landslide structures and kinematic elements at Barry Arm, Alaska in the summer of 2020 Interferometric synthetic aperture radar data from 2020 for landslides at Barry Arm Fjord, Alaska Interferometric synthetic aperture radar data from 2021 for landslides at Barry Arm Fjord, Alaska Simulated inundation extent and depth in Harriman Fjord and Barry Arm, western Prince William Sound, Alaska, resulting from the hypothetical rapid motion of landslides into Barry Arm Fjord, Prince William Sound, Alaska Inventory map of submarine and subaerial-to-submarine landslides in Glacier Bay, Glacier Bay National Park and Preserve, Alaska Slow-moving landslides and subsiding fan deltas mapped from Sentinel-1 InSAR in the Glacier Bay region, Alaska and British Columbia, 2018-2020