Skip to main content
Advanced Search

Filters: Tags: geospatial datasets (X)

1,511 results (32ms)   

Filters
Date Range
Extensions
Types
Contacts
Categories
Tag Types
Tag Schemes
View Results as: JSON ATOM CSV
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
In cooperation with the South Carolina Department of Transportation (SCDOT), the U.S. Geological Survey prepared geospatial layers illustrating the boundaries of the regions used in the South Carolina (SC) Stream Hydrograph Methods presented in Bohman (1990,1992). The region limits were described in written text and depicted in figures in Bohman (1990, 1992), but have not been provided as geospatial layers (due to the age of the original publications). This project used best-available geospatial data from the U.S. Environmental Protection Agency (USEPA) ecoregions (2013) to create equivalent geospatial representations of the Bohman (1990, 1992) region boundaries for the SC Stream Hydrograph Methods. These layers...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
Structure-from-Motion (SfM) point clouds were created from images collected using a remotely piloted unoccupied aerial system over the bluffs of the eastern shore of Lake Michigan in St. Joseph, a urban residential area. The digital imagery was collected with the internal camera of a DJI Phantom 3 PRO for the July 8, 2019 data and DJI Phantom 4 PRO for the July 13, 2021 data that was operated by the University of Toledo. The images cover an extent between the intersection of Lakeshore Dr. with Lakeshore Road to the north, and South Lakeshore Dr. to the south. The images were collected in .jpg format and include Exif metadata with GPS date, time, and latitude and longitude, and other fields. Point clouds were created...
This raster dataset describes elevation values, in meters (m), in Sleeping Bear Dunes National Lakeshore in 1955. The 1955 DEM was produced from historical aerial imagery acquired on April 1, 1955 at a flying height of 8,500 ft (1:17,000). Structure from motion (SfM) analysis of this imagery produced a 0.88 m DEM, which was edited and resampled to 1 m.
thumbnail
The goal of this study was to develop a suite of inter-related water quality monitoring approaches capable of modeling and estimating spatial and temporal gradients of particulate and dissolved total mercury (THg) concentration, and particulate and dissolved methyl mercury (MeHg), concentration, in surface waters across the Sacramento / San Joaquin River Delta (SSJRD). This suite of monitoring approaches included: a) data collection at fixed continuous monitoring stations (CMS) outfitted with in-situ sensors, b) spatial mapping using boat-mounted flow-through sensors, and c) satellite-based remote sensing. The focus of this specific Child Page is to document a series of derived remote sensing products for turbidity...
thumbnail
The U.S. Geological Survey (USGS), in cooperation with the National Marine Sanctuary Program of the National Oceanic and Atmospheric Administration (NOAA), has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The interpretive datasets and source information presented here are for quadrangle 5, which is one of 18 similarly sized segments of the 3,700 square kilometer (km2) SBNMS region. The seabed of the SBNMS region is a glaciated terrain that is topographically and texturally diverse. Quadrangle 5 includes the shallow, rippled, coarse-grained sandy crest and upper eastern and western flanks of southern Stellwagen Bank, its fine-grained sandy...
thumbnail
This data release provides digital flight line data for a high-resolution airborne radiometric survey over parts of Montana in the vicinity of the Boulder Batholith. The airborne survey was jointly funded by the Earth Mapping Resources Initiative and Kennecott Exploration Company. The survey was designed to meet complementary needs related to geologic mapping and characterization of mineral resource potential. A total of 34,041 line km of magnetic and radiometric data were acquired over an irregular-shaped area of 6178 km2. Data were collected from a helicopter flown at a nominal terrain clearance of 100 meters (m) above topography along E-W flight lines spaced at 200 m intervals. Tie lines were flown in an N-S...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: AASG, Aeroradiometric survey, Airborne geophysical survey, Association of State Geologists, Boulder Mountains, All tags...
thumbnail
In June 2022, the U.S. Geological Survey, in collaboration with the Massachusetts Office of Coastal Zone Management, collected high-resolution geophysical data, in Nantucket Sound to understand the regional geology in the vicinity of Horseshoe Shoal. This effort is part of a long-term collaboration between the USGS and the Commonwealth of Massachusetts to map the State’s waters, support research on the Quaternary evolution of coastal Massachusetts, resolve the influence of sea-level change and sediment supply on coastal evolution, and strengthen efforts to understand the type, distribution, and quality of subtidal marine habitats. This collaboration produces high-resolution geologic data that serve the needs of...
Categories: Data; Types: Downloadable, GeoTIFF, Map Service, Raster; Tags: Atlantic Ocean, CMHRP, CZM, Coastal and Marine Hazards and Resources Program, DOI, All tags...
thumbnail
Understanding how sea-level rise will affect coastal landforms and the species and habitats they support is critical for developing approaches that balance the needs of humans and native species. Given the magnitude of the threat posed by sea-level rise, and the urgency to better understand it, there is an increasing need to forecast sea-level rise effects on barrier islands. To address this problem, scientists in the U.S. Geological Survey (USGS) Coastal and Marine Geology program are developing Bayesian networks as a tool to evaluate and to forecast the effects of sea-level rise on shoreline change, barrier island geomorphology, and habitat availability for species such as the piping plover (Charadrius melodus)...
thumbnail
In 2012, Hurricane Sandy struck the Northeastern US causing devastation among coastal ecosystems. Post-hurricane marsh restoration efforts have included sediment deposition, planting of vegetation, and restoring tidal hydrology. The work presented here is part of a larger project funded by the National Fish and Wildlife Foundation (NFWF) to monitor the post-restoration ecological resilience of coastal ecosystems in the wake of Hurricane Sandy. The U.S. Geological Survey Woods Hole Coastal and Marine Science Center made in-situ observations during 2018-2019 and 2022-2023 at two sites: Thompsons Beach, NJ and Stone Harbor, NJ. Marsh creek hydrodynamics and water quality including currents, waves, water levels, water...
thumbnail
This data release contains coastal wetland synthesis products for Massachusetts, developed in collaboration with the Massachusetts Office of Coastal Zone Management. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing Federal, State, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands....
Categories: Data; Types: Downloadable, Map Service, OGC WFS Layer, OGC WMS Layer, Shapefile; Tags: Buzzards Bay, Cape Cod, Cape Cod Bay, Cape Cod National Seashore, Danvers River, All tags...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (mid 1800's-1989) shoreline positions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal...
thumbnail
During Hurricane Irma, Florida and Georgia experienced substantial impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses from hurricanes result in increased vulnerability of coastal regions, including densely populated areas. Erosion may put critical infrastructure at risk of future flooding and may cause economic loss. The U.S. Geological Survey (USGS) Coastal and Marine Hazards Resources Program is working to assess shoreline erosion along the southeast U.S. coastline and analyze its implications for future vulnerability.
thumbnail
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms. Shoreline positions were compiled prior to and following Hurricane Irma along the sandy shorelines of the Gulf of Mexico and Atlantic...
thumbnail
This product consists of time-series calculations of anthropogenic characteristics derived for 16 data themes for multiple scales covering the conterminous United States. The characteristics are those which (a) have consistent data sources, and (b) have the potential to affect the water quality of streams and rivers. All 16 data themes are provided for Hydrologic Unit Code level-10 (HUC-10) boundaries (n = 15,458). Additionally, measures of land use and imperviousness are provided for U.S. Environmental Protection Agency (USEPA) Level 4 ecoregions (n = 967) and for U.S. counties (n = 3,109). The data may be scaled up to broader areas; that is, HUC-10 data may be scaled up to HUC-8, 6, 4, or HUC-2 areas, Level 4...
thumbnail
Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows, which are the largest volcanic hazards for Mount Adams and Mount Baker. Evaluating the hazards associated with such alteration is difficult because much of the alteration is obscured by ice and its depth extent is unknown. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks are identified with helicopter electromagnetic and magnetic measurements at Mount Baker and Mount Adams. High resolution magnetic and electromagnetic...


map background search result map search result map Mount Adams Electromagnetic and Magnetic Data Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes High resolution satellite remote-sensing-based maps of dissolved organic matter and turbidity for the Sacramento-San Joaquin River Delta Geospatial Characterization of Salt Marshes for Massachusetts Elevation of marsh units in Massachusetts salt marshes Intersects for the coastal region around Boston, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Uncertainty of forecasted shoreline positions for Florida and Georgia Intersects for the Florida east coast (FLec) coastal region generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Structure-from-Motion point clouds from St. Joseph surveys, MI, July 13, 2021 Swath bathymetry 13-m-cell-size grid of quadrangle 5 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996 Multibeam backscatter data collected in Nantucket Sound Massachusetts in the vicinity of Horseshoe Shoal, during USGS Field Activity 2022-001-FA using a Teledyne SeaBat Integrated Dual-Head (IDH) T20-P multibeam echosounder (8-bit GeoTIFF, UTM Zone 19N, WGS 84, 1-m resolution) Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Airborne radiometric survey, Boulder Batholith region, Montana, 2022 Structure-from-Motion point clouds from St. Joseph surveys, MI, July 13, 2021 Swath bathymetry 13-m-cell-size grid of quadrangle 5 on Stellwagen Bank offshore of Boston, Massachusetts collected by the U.S. Geological Survey aboard the CCGS Frederick G. Creed from 1994-1996 Unvegetated to vegetated ratio at Thompsons Beach and Stone Harbor, New Jersey from 2014 to 2018 Intersects for coastal region of Buzzards Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Long-term and short-term shoreline change rates for the region of Buzzards Bay, Massachusetts, calculated with and without the proxy-datum bias using the Digital Shoreline Analysis System version 5.1 Baselines for Outer Cape Cod, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 Intersects for coastal region of Cape Cod Bay, Massachusetts, generated to calculate shoreline change rates using the Digital Shoreline Analysis System version 5.1 High resolution satellite remote-sensing-based maps of dissolved organic matter and turbidity for the Sacramento-San Joaquin River Delta Airborne radiometric survey, Boulder Batholith region, Montana, 2022 Geospatial Characterization of Salt Marshes for Massachusetts Elevation of marsh units in Massachusetts salt marshes Intersects for the Florida east coast (FLec) coastal region generated to calculate short-term shoreline change rates using the Digital Shoreline Analysis System version 5 Region Layers for USGS South Carolina Bohman Method Hydrograph in StreamStats Uncertainty of forecasted shoreline positions for Florida and Georgia Changes in anthropogenic influences on streams and rivers in the conterminous U.S. over the last 40 years, derived for 16 data themes