Skip to main content
Advanced Search

Filters: Tags: litter decomposition (X)

2 results (9ms)   

View Results as: JSON ATOM CSV
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long-Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration,...
1. There is mounting evidence that leaf litter typically decomposes more rapidly beneath the plant species it derived from than beneath the different plant species, which has been called home-field advantage (HFA). It has been suggested that this HFA results from the local adaptation of soil communities to decompose the litter that they encounter most often, which probably comes from the plant species above them. 2. To test this hypothesis and to investigate how HFA varies over time and in relation to litter quality, we performed the first detailed assessment of HFA in relation to litter decomposition. We monitored decomposition over time in two reciprocal litter transplant experiments involving three high-elevation...