Skip to main content
Advanced Search

Filters: Tags: urban heat island (X)

5 results (30ms)   

View Results as: JSON ATOM CSV
Abstract (from http://www.esajournals.org/doi/abs/10.1890/13-1961.1): Trees provide ecosystem services that counter negative effects of urban habitats on human and environmental health. Unfortunately, herbivorous arthropod pests are often more abundant on urban than rural trees, reducing tree growth, survival, and ecosystem services. Previous research where vegetation complexity was reduced has attributed elevated urban pest abundance to decreased regulation by natural enemies. However, reducing vegetation complexity, particularly the density of overstory trees, also makes cities hotter than natural habitats. We ask how urban habitat characteristics influence an abiotic factor, temperature, and a biotic factor,...
thumbnail
In this study, we investigated how the interaction of urbanization, latitudinal warming, and scale insect abundance affected urban tree health. We predicted that trees in warmer, lower latitude cities would be in poorer health at lower levels of urbanization than trees at cooler, higher latitudes due to the interaction of urbanization, latitudinal temperature, and herbivory. To evaluate our predictions, we surveyed the abundance of scale insect herbivores on a single, common tree species (Acer rubrum) in eight US cities spanning 10° of latitude. We estimated urbanization at two extents, a local one that accounted for the direct effects on an individual tree, and a larger one that captured the surrounding urban landscape.
thumbnail
We developed an approach to quantify Urban Heat Island (UHI) extent and intensity in 50 cities of CONUS and its surrounding area by using surface temperature from Landsat surface temperature product in a time series manner. Landsat land surface temperature from Landsat Analysis Ready Data (ARD) were used to quantify surface temperature changes from 1985 to 2020. The current study assessed UHI intensity and its variations associated with urban development in an annual basis. Two datasets, over the study period, show that the maximum surface temperature in the high intensity urban area significantly increased while no significant trend was found in surrounding non-urban areas. These released datasets were spatially...
We developed an approach to quantify Urban Heat Island (UHI) extent and intensity in 50 cities of CONUS and its surrounding area by using surface temperature from Landsat surface temperature product in a time series manner. Landsat land surface temperature from Landsat Analysis Ready Data (ARD) were used to quantify surface temperature changes from 1985 to 2020. The current study assessed UHI intensity and its variations associated with urban development in an annual basis. Two datasets, over the study period, show that the maximum surface temperature in the high intensity urban area significantly increased while no significant trend was found in surrounding non-urban areas. These released datasets were spatially...
thumbnail
We developed an approach to quantify Urban Heat Island (UHI) extent and intensity in 50 cities of CONUS and its surrounding area by using surface temperature from Landsat surface temperature product in a time series manner. Landsat land surface temperature from Landsat Analysis Ready Data (ARD) were used to quantify surface temperature changes from 1985 to 2020. The current study assessed UHI intensity and its variations associated with urban development in an annual basis. Two datasets, over the study period, show that the maximum surface temperature in the high intensity urban area significantly increased while no significant trend was found in surrounding non-urban areas. These released datasets were spatially...


    map background search result map search result map Land surface thermal feature (MaxLST) change monitoring in urban and urban wild land interface in 50 cities of CONUS from 1985-2020 Land surface thermal feature (MeanLST) change monitoring in urban and urban wild land interface in 50 cities of CONUS from 1985-2020 Scale insect abundance, impervious surface proportions, and temperature data for Acer rubrum study trees Scale insect abundance, impervious surface proportions, and temperature data for Acer rubrum study trees Land surface thermal feature (MaxLST) change monitoring in urban and urban wild land interface in 50 cities of CONUS from 1985-2020 Land surface thermal feature (MeanLST) change monitoring in urban and urban wild land interface in 50 cities of CONUS from 1985-2020