Skip to main content

Person

Joel B Sankey

Research Geologist

Southwest Biological Science Center

Email: jsankey@usgs.gov
Office Phone: 928-556-7289
Fax: 928-556-7100
ORCID: 0000-0003-3150-4992

Location
Bldgs.4And5
2255 North Gemini Drive
Mail Stop 150
Flagstaff , AZ 86001
US

Supervisor: Andrew A Schultz
thumbnail
These data represent total vegetation and surface water along approximately 12 kilometers of the Paria River upstream from the confluence of the Colorado River at Lees Ferry, Arizona. They are derived from airborne, multispectral imagery obtained in late May 2009, 2013, and 2021, collected with a push-broom sensor with 4 spectral bands depicting Blue, Green, Red and Near-Infrared wavelengths at a spatial resolution of 20 centimeters. The vegetation classification data were created using a supervised classification algorithm provided by Harris Geospatial in ENVI version 5.6.3 (Exelis Visual Information Solutions, Boulder, Colorado). The water data were created using a Green Normalized Difference Vegetation Index...
Tags: Arizona, Botany, Cloud Optimized GeoTIFF data, Colorado River, Ecology, All tags...
thumbnail
In May 2021, the Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey’s (USGS), Southwest Biological Science Center (SBSC) acquired airborne multispectral high resolution data for the Colorado River in Grand Canyon in Arizona, USA. The imagery data consist of four bands (Band 1 – red, Band 2 – green, Band 3 – blue, and Band 4 – near infrared) with a ground resolution of 20 centimeters (cm). These image data are available to the public as 16-bit GeoTIFF files, which can be read and used by most geographic information system (GIS) and image-processing software. The spatial reference of the image data are in the State Plane (SP) map projection using the central Arizona zone (FIPS 0202)...
thumbnail
These data were used to examine how post-fire sedimentation might change in western USA watersheds with future fire from the decade of 2001-10 through 2041-50. The data include previously published projections (Hawbaker and Zhu, 2012a, b) of areas burned by future wildfires for several climate change scenarios and general circulation models (GCMs) that we summarized for 471 watersheds of the western USA. The data also include previously published predictions (Miller et al., 2011) of first year post-fire hillslope soil erosion from GeoWEPP that we summarized for 471 watersheds of the western USA. We synthesized these summarized data in order to project sediment yield from future fires for 471 watersheds through the...
The area burned by wildfires has increased in recent decades and is expected to increase in the future for many watersheds worldwide due to climate change. Burned areas within watersheds increase soil erosion rates, which can increase the downstream accumulation of sediment in rivers and reservoirs. Using an ensemble of climate, fire, and erosion models, we show that post-fire sedimentation is projected to increase for more than ¾ of watersheds by at least 10 % and for more than ¼ of watersheds by at least 100 % by the 2041 to 2050 decade in the western USA. In this region, 65 % of the water supply originates from forested lands that are prone to wildfire, and many of the watersheds with projected increases in sedimentation...
thumbnail
These data were compiled to investigate the control of drying on the aeolian transport of river-sourced sand. Objectives of our study were to to examine aeolian sediment transport during a five-day period of low steady river flow on a river sandbar and adjacent aeolian dunefield. These data represent the observed and theoretical threshold fiction velocities for aeolian sediment transport, as well as the grain size, sediment moisture content, surface roughness and other characteristics of the sandbar and sand dune surfaces. These data were collected at a sandbar and aeolian sand dune along the Colorado River approximately 19 km downstream from Glen Canyon Dam at Lees Ferry, Arizona, USA from March 15 to 20, 2021....
Categories: Data; Tags: Arizona, Climatology, Colorado River, Ecology, Geography, All tags...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.