Skip to main content

Person

David M Theobald

http://www.fs.fed.us/wwetac//projects/theobald.html Citation: Theobold, D.M., D.M. Merritt, and J.B. Norman, III. 2010. Assessment of Threats to Riparian Ecosystems in the Western U.S. A report presented to The Western Environmental Threats Assessment Center, Priveville, OR by The U.S.D.A. Stream Systems Technology Center and Colorado State University, Fort Collins, CO, 61p.
Categories: Publication
These data were compiled as a part of a landscape conservation design effort for the sagebrush biome, and are the result of applying a spatially explicit model that assessed geographic patterns in sagebrush ecological integrity and used these results to identify Core Sagebrush Areas (CSAs), Growth Opportunity Areas (GOAs), and Other Rangeland Areas (ORAs). Our overall objective in this study was to characterize geographic patterns in ecological integrity of sagebrush ecosystems. These data represent the estimated integrity of sagebrush ecosystems, estimated from a spatial model that assigns high integrity is areas with abundant big sagebrush and perennial grass/forb cover and with minimal annual grass/forb cover,...
Tags: Arizona, Botany, California, Climatology, Colorado, All tags...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1111/conl.12322/full): Under rapid landscape change, there is a significant need to expand and connect protected areas (PAs) to prevent further loss of biodiversity and preserve ecological functions across broad geographies. We used a model of landscape resistance and electronic circuit theory to estimate patterns of ecological flow among existing PAs in the western United States. We applied these results to areas previously identified as having high conservation value to distinguish those best positioned to maintain and enhance ecological connectivity and integrity. We found that current flow centrality was highest and effective resistance lowest in areas that...
thumbnail
Understanding how climate change will contribute to ongoing declines in sagebrush ecological integrity is critical for informing natural resource management. We assessed potential future changes in sagebrush ecological integrity under a range of scenarios using an individual plant-based simulation model, integrated with remotely sensed estimates of current sagebrush ecological integrity. The simulation model allowed us to estimate how climate change, wildfire, and invasive annuals interact to alter the potential abundance of key plant functional types that influence sagebrush ecological integrity: sagebrush, perennial grasses, and annual grasses. We provide GeoTIFFs of biome-wide projections of future sagebrush...
Abstract (from http://www.esajournals.org/doi/abs/10.1890/13-0905.1): Many protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies. We conducted an assessment of exposure of U.S. National Parks to climate and land use change and consequences for vegetation communities. We first defined park protected-area centered ecosystems (PACEs) based on ecological...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.