Skip to main content

Person

Meredith M Reitz

Research Scientist (RGE), Hydrologic Remote Sensing Branch

Office of the Chief Operating Officer

Email: mreitz@usgs.gov
Office Phone: 703-648-5834
Fax: 703-648-5832
ORCID: 0000-0001-9519-6103

Location
John W Powell FB
12201 Sunrise Valley Drive
Reston , VA 20192-0002
US
thumbnail
This dataset includes 800m resolution long-term average estimates of the contributions to the quick-flow runoff component of the water budget over the time period from 2000-2013 and annual estimates for the individual years. These estimates were developed with a new empirical regression for surface runoff data generated from a USGS-developed hydrograph separation program (PART) run on streamflow data from 1434 gaged watersheds as a function of surficial geology type (USGS), precipitation (PRISM), and soil hydraulic conductivity (STATSGO). Irrigated water quantities reported in the 2000, 2005, and 2010 USGS Water Use datasets are also incorporated as effective additional precipitation. The contributing input datasets...
thumbnail
The data in this release describe various aspects of the impacts of urbanization on evapotranspiration at local to global spatial scales. This data release is associated with the publication of these results in a concurrent journal article. Analyses in the journal article included comparisons between urban and non-urban ET in a variety of climate settings and spatial scales. Urbanization has been shown to locally increase the nighttime temperatures creating urban heat islands, which partly arise due to evapotranspiration (ET) reduction. It is unclear how the direction and magnitude of the change in local ET due to urbanization varies globally across different climatic regimes. This knowledge gap is critical, both...
thumbnail
Global hydroclimatic conditions have been significantly altered, over the past century, by anthropogenic influences that arise from warming global climate and also from local/regional anthropogenic disturbances. There has been never been an effort that has systematically analyzed how the spatio-temporal variability of land-surface fluxes vary in natural and human-altered watersheds globally. This synthesis study will adapt and extend the classical Budyko framework to quantify the role of drivers - changing climate and local human disturbances - in altering flow regimes and in creating urban heat island episodes over the globe. An allied goal is to develop parsimonious hydroclimatic models that explain the spatio-temporal...
thumbnail
This dataset includes 1km resolution monthly timescale estimates of evapotranspiration (ET) for the 2000-2015 timespan. These new SSEBop-WB estimates were developed by combining a previously published long-term annual average evapotranspiration map based on water balance constraints with the SSEBop remote sensing ET product (see Associated Items). The combination aims to leverage the advantages of each approach in gaining both the temporal resolution of remote sensing data and the long-term magnitude constraints of ground-based data. This data release also includes other supporting data associated with the publication of these estimation methods in a concurrent journal article. Analyses in the journal article included...
thumbnail
This data set includes 1 km resolution monthly timescale estimates of the effective recharge component of the water budget over the time period from October 2003 - December 2015. These estimates were developed as water budget residuals using previously published data sets for other water budget components: PRISM precipitation (Daly et al., 2008), SNODAS snow water equivalent (National Operational Hydrologic Remote Sensing Center, 2004), SSEBop-WB evapotranspiration (Reitz et al., 2017a), a map of groundwater-sourced irrigation (Reitz et al., 2017b), and monthly surface runoff maps (Reitz et al., 2019). The recharge data were estimated as the difference between water supply (precipitation plus snow melt plus irrigation)...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.