Skip to main content

Person

Thomas M Over

Research Hydrologist

Email: tmover@usgs.gov
Office Phone: 217-328-9757
Fax: 217-328-9770
ORCID: 0000-0001-8280-4368

Location
405 N. Goodwin Avenue
Urbana , IL 61801
thumbnail
This data release contains daily time series estimates of natural streamflow at 5,439 GAGES-II non-reference streamgages in 19 study regions across the conterminous United States from October 1, 1980 through September 30, 2017, using five statistical techniques: nearest-neighbor drainage area ratio (NNDAR), map-correlation drainage area ratio (MCDAR), nearest-neighbor nonlinear spatial interpolation using flow duration curves (NNQPPQ), map-correlation nonlinear spatial interpolation using flow duration curves (MCQPPQ), and ordinary kriging of the logarithms of discharge per unit area (OKDAR). NNDAR, MCDAR, NNQPPQ, and MCQPPQ estimates were computed following methods described in Farmer and others (2014), with...
thumbnail
Note: this data release has been deprecated due to errors found in the ARGNXX.wdm file. Please see the detail in new data release at https://doi.org/10.5066/P146RBHK IMPORTANT NOTE: A more recent version of this data release is available from this link. This data release is the update of the U.S. Geological Survey - ScienceBase data release by Bera and Over (2016), with the processed data through September 30, 2015. The primary data for each year is downloaded from the ANL website (http://gonzalo.er.anl.gov/ANLMET/numeric/) and is processed following the guidelines documented in Over and others (2010) and Bera (2014). Hourly potential evapotranspiration computed using the computer program LXPET (Lamoreux Potential...
thumbnail
Peak-flow frequency analysis is crucial in various water-resources management applications, including floodplain management and critical structure design. Federal guidelines for peak-flow frequency analyses, provided in Bulletin 17C, assume that the statistical properties of the hydrologic processes driving variability in peak flows do not change over time and so the frequency distribution of annual peak flows is stationary. Better understanding of long-term climatic persistence and further consideration of potential climate and land-use changes have caused the assumption of stationarity to be reexamined. This data release contains input data and results of a study investigating hydroclimatic trends in peak streamflow...
Note: this data release has been deprecated due to errors found in the ARGNXX.wdm file. Please see the detail in new data release at https://doi.org/10.5066/P146RBHK The text file "PET.TXT" contains the hourly computed potential evapotranspiration (PET) data from January 1, 1948, to September 30, 2014. This data is computed from average daily air temperature, average daily dewpoint temperature, daily unadjusted wind travel, and daily solar radiation using the Fortran program LXPET. This program is documented in detail in Murphy (2005). Reference Cited: Murphy, E.A., 2005, Comparison of potential evapotranspiration calculated by the LXPET (Lamoreux Potential Evapotranspiration) Program and by the WDMUtil (Watershed...
Note: this data release has been deprecated due to errors found in the ARGNXX.wdm file. Please see the detail in new data release at https://doi.org/10.5066/P146RBHK This text file "Solar radiation.txt" contains hourly data in Langleys and associated data-source flag from January 1, 1948, to September 30, 2016. The primary source of the data is the Argonne National Laboratory, Illinois. The data-source flag consist of a three-digit sequence in the form "xyz" that describe the origin and transformations of the data values. They indicate if the data are original or missing, the method that was used to fill the missing periods, and any other transformations of the data. Bera (2014) describes in detail an addition...
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.