Skip to main content

Bart Nijssen

This study analyzed the linkages between large-scale climate patterns and regional precipitation variability, in particular the interannual variation of seasonal precipitation in the Colorado River Basin. Two climate indices, the Southern Oscillation Index (SOI) and the Pacific Decadal Oscillation (PDO), were selected to represent climate patterns. Conceptual influence indices, which quantify the strength of linkages between climate patterns and precipitation variability, were developed based on the Standardized Precipitation Index (SPI). In turn, the spatial variability of the influence indices within the Colorado River Basin was examined for different combinations of SOI and PDO phases and lead times from zero...
A frequently encountered difficulty in assessing model-predicted land–atmosphere exchanges of moisture and energy is the absence of comprehensive observations to which model predictions can be compared at the spatial and temporal resolutions at which the models operate. Various methods have been used to evaluate the land surface schemes in coupled models, including comparisons of model-predicted evapotranspiration with values derived from atmospheric water balances, comparison of model-predicted energy and radiative fluxes with tower measurements during periods of intensive observations, comparison of model-predicted runoff with observed streamflow, and comparison of model predictions of soil moisture with spatial...
Abstract (from http://onlinelibrary.wiley.com/doi/10.1002/hyp.10964/abstract): While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, Distributed Hydrology Soil Vegetation Model-Water Quality (DHSVM-WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds...
We assessed the performance of the MTCLIM scheme for estimating downward shortwave (SWdown) radiation and surface humidity from daily temperature range (DTR), as well as several schemes for estimating downward longwave radiation (LWdown), at 50 Baseline Solar Radiation Network stations globally. All of the algorithms performed reasonably well under most climate conditions, with biases and mean absolute errors generally less than 3% and 20%, respectively, over more than 70% of the global land surface. However, estimated SWdown had a bias of −26% at coastal sites, due to the ocean's moderating influence on DTR, and in continental interiors, SWdown had an average bias of −15% in the presence of snow, which was reduced...
This recorded presentation is from the April 17, 2014 workshop for the "Integrated Scenarios of the Future Northwest Environment" project. The recording is available on YouTube. The Integrated Scenarios project is an effort to understand and predict the effects of climate change on the Northwest's climate, hydrology, and vegetation. The project was funded by the Northwest Climate Science Center and the Climate Impacts Research Consortium.
View more...
ScienceBase brings together the best information it can find about USGS researchers and offices to show connections to publications, projects, and data. We are still working to improve this process and information is by no means complete. If you don't see everything you know is associated with you, a colleague, or your office, please be patient while we work to connect the dots. Feel free to contact sciencebase@usgs.gov.